diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /anm/n1.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'anm/n1.lyx')
| -rw-r--r-- | anm/n1.lyx | 52 |
1 files changed, 26 insertions, 26 deletions
@@ -147,7 +147,7 @@ Llamamos \end_inset , o -\begin_inset Formula ${\cal M}_{n}(A):={\cal M}_{nn}(A)$ +\begin_inset Formula ${\cal M}_{n}(A)\coloneqq {\cal M}_{nn}(A)$ \end_inset , pudiendo omitir @@ -184,7 +184,7 @@ Dadas \end_inset , llamamos -\begin_inset Formula $X+Y:=(X_{ij}+Y_{ij})_{1\leq i\leq m}^{1\leq j\leq n}$ +\begin_inset Formula $X+Y\coloneqq (X_{ij}+Y_{ij})_{1\leq i\leq m}^{1\leq j\leq n}$ \end_inset , y dadas @@ -196,7 +196,7 @@ Dadas \end_inset , llamamos -\begin_inset Formula $XY:=(\sum_{k=1}^{n}X_{ik}Y_{kj})_{1\leq i\leq m}^{1\leq j\leq p}$ +\begin_inset Formula $XY\coloneqq (\sum_{k=1}^{n}X_{ik}Y_{kj})_{1\leq i\leq m}^{1\leq j\leq p}$ \end_inset . @@ -238,7 +238,7 @@ matriz adjunta \end_inset a -\begin_inset Formula $M^{*}:=(\overline{M_{ji}})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$ +\begin_inset Formula $M^{*}\coloneqq (\overline{M_{ji}})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$ \end_inset y @@ -250,7 +250,7 @@ matriz traspuesta \end_inset a -\begin_inset Formula $M^{t}:=(M_{ji})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$ +\begin_inset Formula $M^{t}\coloneqq (M_{ji})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$ \end_inset , que coincide con la adjunta cuando los coeficientes son reales, y se tiene @@ -347,7 +347,7 @@ vector propio polinomio característico \series default , -\begin_inset Formula $p_{A}(\lambda):=\det(A-\lambda I)$ +\begin_inset Formula $p_{A}(\lambda)\coloneqq \det(A-\lambda I)$ \end_inset . @@ -364,7 +364,7 @@ espectro \end_inset es -\begin_inset Formula $\sigma(A):=\{\lambda_{1},\dots,\lambda_{n}\}$ +\begin_inset Formula $\sigma(A)\coloneqq \{\lambda_{1},\dots,\lambda_{n}\}$ \end_inset y su @@ -372,7 +372,7 @@ espectro radio espectral \series default es -\begin_inset Formula $\rho(A):=\max\{|\lambda_{1}|,\dots,|\lambda_{n}|\}$ +\begin_inset Formula $\rho(A)\coloneqq \max\{|\lambda_{1}|,\dots,|\lambda_{n}|\}$ \end_inset . @@ -476,7 +476,7 @@ matriz de coeficientes \end_inset -\begin_inset Formula $A:=(a_{ij})_{ij}$ +\begin_inset Formula $A\coloneqq (a_{ij})_{ij}$ \end_inset , @@ -484,7 +484,7 @@ matriz de coeficientes columna de términos independientes \series default a la matriz columna -\begin_inset Formula $b:=(b_{i})_{ij}$ +\begin_inset Formula $b\coloneqq (b_{i})_{ij}$ \end_inset y @@ -852,7 +852,7 @@ Lo probamos primero para \end_inset y -\begin_inset Formula $W:=\text{span}(p_{2},\dots,p_{n})$ +\begin_inset Formula $W\coloneqq \text{span}(p_{2},\dots,p_{n})$ \end_inset , existen @@ -987,7 +987,7 @@ Existe \end_inset unitaria tal que -\begin_inset Formula $T:=U^{-1}AU=U^{*}AU$ +\begin_inset Formula $T\coloneqq U^{-1}AU=U^{*}AU$ \end_inset es triangular superior, pero @@ -1187,7 +1187,7 @@ Para \end_inset , y haciendo -\begin_inset Formula $u_{j}:=\frac{f_{j}}{\mu_{j}}$ +\begin_inset Formula $u_{j}\coloneqq \frac{f_{j}}{\mu_{j}}$ \end_inset para @@ -1330,7 +1330,7 @@ Sean \end_inset ), -\begin_inset Formula $E_{k}:=\text{span}\{p_{1},\dots,p_{k}\}$ +\begin_inset Formula $E_{k}\coloneqq \text{span}\{p_{1},\dots,p_{k}\}$ \end_inset para cada @@ -1375,7 +1375,7 @@ Sean \end_inset unitaria tal que -\begin_inset Formula $D:=U^{*}AU=\text{diag}(\lambda_{1},\dots,\lambda_{n})$ +\begin_inset Formula $D\coloneqq U^{*}AU=\text{diag}(\lambda_{1},\dots,\lambda_{n})$ \end_inset , @@ -1519,7 +1519,7 @@ Queremos ver que . Si -\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V\mid v\bot E_{k-1}\}$ +\begin_inset Formula $E_{k-1}^{\bot}\coloneqq \{v\in V\mid v\bot E_{k-1}\}$ \end_inset , basta ver que para todo subespacio @@ -1671,7 +1671,7 @@ Si \end_inset dada por -\begin_inset Formula $\Vert f\Vert:=\sqrt{\langle f,f\rangle}$ +\begin_inset Formula $\Vert f\Vert\coloneqq \sqrt{\langle f,f\rangle}$ \end_inset define una norma en @@ -1845,7 +1845,7 @@ Entonces, para \begin_layout Standard Sea -\begin_inset Formula $A:=(a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{C})$ +\begin_inset Formula $A\coloneqq (a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{C})$ \end_inset : @@ -2028,7 +2028,7 @@ La norma euclídea \series default , -\begin_inset Formula $\Vert A\Vert_{E}:=\sqrt{\sum_{i,j}|a_{ij}|^{2}}$ +\begin_inset Formula $\Vert A\Vert_{E}\coloneqq \sqrt{\sum_{i,j}|a_{ij}|^{2}}$ \end_inset , es una norma matricial no subordinada a ninguna norma en @@ -2150,7 +2150,7 @@ Sea \begin_layout Standard Sea -\begin_inset Formula $D_{\delta}:=\text{diag}(1,\delta,\dots,\delta^{n-1})$ +\begin_inset Formula $D_{\delta}\coloneqq \text{diag}(1,\delta,\dots,\delta^{n-1})$ \end_inset para @@ -2202,7 +2202,7 @@ La diagonal no cambia, la matriz sigue siendo triangular superior y, para . Tomando la norma -\begin_inset Formula $\Vert v\Vert_{*}:=\Vert(UD_{\delta})^{-1}v\Vert_{\infty}$ +\begin_inset Formula $\Vert v\Vert_{*}\coloneqq \Vert(UD_{\delta})^{-1}v\Vert_{\infty}$ \end_inset , la norma subordinada a esta cumple @@ -2353,7 +2353,7 @@ Demostración: \end_inset , sea -\begin_inset Formula $B_{\varepsilon}:=\frac{B}{\rho(B)+\varepsilon}$ +\begin_inset Formula $B_{\varepsilon}\coloneqq \frac{B}{\rho(B)+\varepsilon}$ \end_inset , se tiene @@ -2510,7 +2510,7 @@ número de condición \end_inset a -\begin_inset Formula $\text{cond}A:=\Vert A\Vert\Vert A^{-1}\Vert$ +\begin_inset Formula $\text{cond}A\coloneqq \Vert A\Vert\Vert A^{-1}\Vert$ \end_inset , con lo que si @@ -2556,7 +2556,7 @@ número de condición \begin_layout Standard Llamamos -\begin_inset Formula $\text{cond}_{p}(A):=\Vert A^{-1}\Vert_{p}\Vert A\Vert_{p}$ +\begin_inset Formula $\text{cond}_{p}(A)\coloneqq \Vert A^{-1}\Vert_{p}\Vert A\Vert_{p}$ \end_inset . @@ -2654,7 +2654,7 @@ Sean \end_inset invertible con -\begin_inset Formula $D:=P^{-1}AP=:\text{diag}(\lambda_{i})$ +\begin_inset Formula $D\coloneqq P^{-1}AP=:\text{diag}(\lambda_{i})$ \end_inset , @@ -2666,7 +2666,7 @@ Sean \end_inset para toda matriz diagonal y -\begin_inset Formula $D_{i}:=B(\lambda_{i},\text{cond}(P)\Vert\Delta A\Vert)\subseteq\mathbb{C}$ +\begin_inset Formula $D_{i}\coloneqq B(\lambda_{i},\text{cond}(P)\Vert\Delta A\Vert)\subseteq\mathbb{C}$ \end_inset , |
