aboutsummaryrefslogtreecommitdiff
path: root/anm
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /anm
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'anm')
-rw-r--r--anm/n1.lyx52
-rw-r--r--anm/n2.lyx64
-rw-r--r--anm/n3.lyx68
-rw-r--r--anm/n4.lyx46
-rw-r--r--anm/n5.lyx20
5 files changed, 130 insertions, 120 deletions
diff --git a/anm/n1.lyx b/anm/n1.lyx
index b001a5b..c16347d 100644
--- a/anm/n1.lyx
+++ b/anm/n1.lyx
@@ -147,7 +147,7 @@ Llamamos
\end_inset
, o
-\begin_inset Formula ${\cal M}_{n}(A):={\cal M}_{nn}(A)$
+\begin_inset Formula ${\cal M}_{n}(A)\coloneqq {\cal M}_{nn}(A)$
\end_inset
, pudiendo omitir
@@ -184,7 +184,7 @@ Dadas
\end_inset
, llamamos
-\begin_inset Formula $X+Y:=(X_{ij}+Y_{ij})_{1\leq i\leq m}^{1\leq j\leq n}$
+\begin_inset Formula $X+Y\coloneqq (X_{ij}+Y_{ij})_{1\leq i\leq m}^{1\leq j\leq n}$
\end_inset
, y dadas
@@ -196,7 +196,7 @@ Dadas
\end_inset
, llamamos
-\begin_inset Formula $XY:=(\sum_{k=1}^{n}X_{ik}Y_{kj})_{1\leq i\leq m}^{1\leq j\leq p}$
+\begin_inset Formula $XY\coloneqq (\sum_{k=1}^{n}X_{ik}Y_{kj})_{1\leq i\leq m}^{1\leq j\leq p}$
\end_inset
.
@@ -238,7 +238,7 @@ matriz adjunta
\end_inset
a
-\begin_inset Formula $M^{*}:=(\overline{M_{ji}})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$
+\begin_inset Formula $M^{*}\coloneqq (\overline{M_{ji}})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$
\end_inset
y
@@ -250,7 +250,7 @@ matriz traspuesta
\end_inset
a
-\begin_inset Formula $M^{t}:=(M_{ji})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$
+\begin_inset Formula $M^{t}\coloneqq (M_{ji})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$
\end_inset
, que coincide con la adjunta cuando los coeficientes son reales, y se tiene
@@ -347,7 +347,7 @@ vector propio
polinomio característico
\series default
,
-\begin_inset Formula $p_{A}(\lambda):=\det(A-\lambda I)$
+\begin_inset Formula $p_{A}(\lambda)\coloneqq \det(A-\lambda I)$
\end_inset
.
@@ -364,7 +364,7 @@ espectro
\end_inset
es
-\begin_inset Formula $\sigma(A):=\{\lambda_{1},\dots,\lambda_{n}\}$
+\begin_inset Formula $\sigma(A)\coloneqq \{\lambda_{1},\dots,\lambda_{n}\}$
\end_inset
y su
@@ -372,7 +372,7 @@ espectro
radio espectral
\series default
es
-\begin_inset Formula $\rho(A):=\max\{|\lambda_{1}|,\dots,|\lambda_{n}|\}$
+\begin_inset Formula $\rho(A)\coloneqq \max\{|\lambda_{1}|,\dots,|\lambda_{n}|\}$
\end_inset
.
@@ -476,7 +476,7 @@ matriz de coeficientes
\end_inset
-\begin_inset Formula $A:=(a_{ij})_{ij}$
+\begin_inset Formula $A\coloneqq (a_{ij})_{ij}$
\end_inset
,
@@ -484,7 +484,7 @@ matriz de coeficientes
columna de términos independientes
\series default
a la matriz columna
-\begin_inset Formula $b:=(b_{i})_{ij}$
+\begin_inset Formula $b\coloneqq (b_{i})_{ij}$
\end_inset
y
@@ -852,7 +852,7 @@ Lo probamos primero para
\end_inset
y
-\begin_inset Formula $W:=\text{span}(p_{2},\dots,p_{n})$
+\begin_inset Formula $W\coloneqq \text{span}(p_{2},\dots,p_{n})$
\end_inset
, existen
@@ -987,7 +987,7 @@ Existe
\end_inset
unitaria tal que
-\begin_inset Formula $T:=U^{-1}AU=U^{*}AU$
+\begin_inset Formula $T\coloneqq U^{-1}AU=U^{*}AU$
\end_inset
es triangular superior, pero
@@ -1187,7 +1187,7 @@ Para
\end_inset
, y haciendo
-\begin_inset Formula $u_{j}:=\frac{f_{j}}{\mu_{j}}$
+\begin_inset Formula $u_{j}\coloneqq \frac{f_{j}}{\mu_{j}}$
\end_inset
para
@@ -1330,7 +1330,7 @@ Sean
\end_inset
),
-\begin_inset Formula $E_{k}:=\text{span}\{p_{1},\dots,p_{k}\}$
+\begin_inset Formula $E_{k}\coloneqq \text{span}\{p_{1},\dots,p_{k}\}$
\end_inset
para cada
@@ -1375,7 +1375,7 @@ Sean
\end_inset
unitaria tal que
-\begin_inset Formula $D:=U^{*}AU=\text{diag}(\lambda_{1},\dots,\lambda_{n})$
+\begin_inset Formula $D\coloneqq U^{*}AU=\text{diag}(\lambda_{1},\dots,\lambda_{n})$
\end_inset
,
@@ -1519,7 +1519,7 @@ Queremos ver que
.
Si
-\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V\mid v\bot E_{k-1}\}$
+\begin_inset Formula $E_{k-1}^{\bot}\coloneqq \{v\in V\mid v\bot E_{k-1}\}$
\end_inset
, basta ver que para todo subespacio
@@ -1671,7 +1671,7 @@ Si
\end_inset
dada por
-\begin_inset Formula $\Vert f\Vert:=\sqrt{\langle f,f\rangle}$
+\begin_inset Formula $\Vert f\Vert\coloneqq \sqrt{\langle f,f\rangle}$
\end_inset
define una norma en
@@ -1845,7 +1845,7 @@ Entonces, para
\begin_layout Standard
Sea
-\begin_inset Formula $A:=(a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{C})$
+\begin_inset Formula $A\coloneqq (a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{C})$
\end_inset
:
@@ -2028,7 +2028,7 @@ La
norma euclídea
\series default
,
-\begin_inset Formula $\Vert A\Vert_{E}:=\sqrt{\sum_{i,j}|a_{ij}|^{2}}$
+\begin_inset Formula $\Vert A\Vert_{E}\coloneqq \sqrt{\sum_{i,j}|a_{ij}|^{2}}$
\end_inset
, es una norma matricial no subordinada a ninguna norma en
@@ -2150,7 +2150,7 @@ Sea
\begin_layout Standard
Sea
-\begin_inset Formula $D_{\delta}:=\text{diag}(1,\delta,\dots,\delta^{n-1})$
+\begin_inset Formula $D_{\delta}\coloneqq \text{diag}(1,\delta,\dots,\delta^{n-1})$
\end_inset
para
@@ -2202,7 +2202,7 @@ La diagonal no cambia, la matriz sigue siendo triangular superior y, para
.
Tomando la norma
-\begin_inset Formula $\Vert v\Vert_{*}:=\Vert(UD_{\delta})^{-1}v\Vert_{\infty}$
+\begin_inset Formula $\Vert v\Vert_{*}\coloneqq \Vert(UD_{\delta})^{-1}v\Vert_{\infty}$
\end_inset
, la norma subordinada a esta cumple
@@ -2353,7 +2353,7 @@ Demostración:
\end_inset
, sea
-\begin_inset Formula $B_{\varepsilon}:=\frac{B}{\rho(B)+\varepsilon}$
+\begin_inset Formula $B_{\varepsilon}\coloneqq \frac{B}{\rho(B)+\varepsilon}$
\end_inset
, se tiene
@@ -2510,7 +2510,7 @@ número de condición
\end_inset
a
-\begin_inset Formula $\text{cond}A:=\Vert A\Vert\Vert A^{-1}\Vert$
+\begin_inset Formula $\text{cond}A\coloneqq \Vert A\Vert\Vert A^{-1}\Vert$
\end_inset
, con lo que si
@@ -2556,7 +2556,7 @@ número de condición
\begin_layout Standard
Llamamos
-\begin_inset Formula $\text{cond}_{p}(A):=\Vert A^{-1}\Vert_{p}\Vert A\Vert_{p}$
+\begin_inset Formula $\text{cond}_{p}(A)\coloneqq \Vert A^{-1}\Vert_{p}\Vert A\Vert_{p}$
\end_inset
.
@@ -2654,7 +2654,7 @@ Sean
\end_inset
invertible con
-\begin_inset Formula $D:=P^{-1}AP=:\text{diag}(\lambda_{i})$
+\begin_inset Formula $D\coloneqq P^{-1}AP=:\text{diag}(\lambda_{i})$
\end_inset
,
@@ -2666,7 +2666,7 @@ Sean
\end_inset
para toda matriz diagonal y
-\begin_inset Formula $D_{i}:=B(\lambda_{i},\text{cond}(P)\Vert\Delta A\Vert)\subseteq\mathbb{C}$
+\begin_inset Formula $D_{i}\coloneqq B(\lambda_{i},\text{cond}(P)\Vert\Delta A\Vert)\subseteq\mathbb{C}$
\end_inset
,
diff --git a/anm/n2.lyx b/anm/n2.lyx
index df93e7b..67a1f95 100644
--- a/anm/n2.lyx
+++ b/anm/n2.lyx
@@ -289,14 +289,20 @@ status open
\backslash
-Entrada{$A:=(a_{ij})$, matriz cuadrada de tamaño $n$.}
+Entrada{$A
+\backslash
+coloneqq (a_{ij})$, matriz cuadrada de tamaño $n$.}
\end_layout
\begin_layout Plain Layout
\backslash
-Salida{Factorización $(L:=(l_{ij}),U:=(u_{ij}))$ de $A$, o error.}
+Salida{Factorización $(L
+\backslash
+coloneqq (l_{ij}),U
+\backslash
+coloneqq (u_{ij}))$ de $A$, o error.}
\end_layout
\begin_layout Plain Layout
@@ -558,7 +564,7 @@ Una matriz
\end_inset
Sea
-\begin_inset Formula $(L:=(l_{ij}),U:=(u_{ij}))$
+\begin_inset Formula $(L\coloneqq (l_{ij}),U\coloneqq (u_{ij}))$
\end_inset
esta factorización,
@@ -786,11 +792,11 @@ A partir de la factorización de Dootlittle
\end_inset
con
-\begin_inset Formula $D:=\text{diag}(u_{11},\dots,u_{nn})$
+\begin_inset Formula $D\coloneqq \text{diag}(u_{11},\dots,u_{nn})$
\end_inset
y
-\begin_inset Formula $\tilde{U}:=(u_{ij}/u_{ii})_{ij}$
+\begin_inset Formula $\tilde{U}\coloneqq (u_{ij}/u_{ii})_{ij}$
\end_inset
.
@@ -1045,11 +1051,11 @@ es de filas si y sólo si ninguno de sus menores principales hasta
\begin_layout Standard
En tal caso, sean
-\begin_inset Formula $L:=M_{1}^{-1}\cdots M_{n-1}^{-1}$
+\begin_inset Formula $L\coloneqq M_{1}^{-1}\cdots M_{n-1}^{-1}$
\end_inset
y
-\begin_inset Formula $U:=A^{(n)}$
+\begin_inset Formula $U\coloneqq A^{(n)}$
\end_inset
, entonces
@@ -1270,7 +1276,7 @@ Diagonal estrictamente dominante
\begin_layout Standard
Una matriz
-\begin_inset Formula $A:=(a_{ij})\in{\cal M}_{n}(\mathbb{C})$
+\begin_inset Formula $A\coloneqq (a_{ij})\in{\cal M}_{n}(\mathbb{C})$
\end_inset
tiene
@@ -1303,7 +1309,7 @@ Toda matriz con diagonal estrictamente dominante es no singular y admite
Demostración:
\series default
Si
-\begin_inset Formula $A:=(a_{ij})$
+\begin_inset Formula $A\coloneqq (a_{ij})$
\end_inset
fuese singular, sus columnas serían linealmente dependientes y existiría
@@ -1383,7 +1389,7 @@ y, despejando
.
Como
-\begin_inset Formula $B:=(b_{ij}):=M_{1}A$
+\begin_inset Formula $B\coloneqq (b_{ij})\coloneqq M_{1}A$
\end_inset
tiene la misma primera fila que
@@ -1491,7 +1497,7 @@ Si lo fuera, las columnas serían linealmente dependientes y existiría
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\langle x,y\rangle_{A}:=y^{*}Ax$
+\begin_inset Formula $\langle x,y\rangle_{A}\coloneqq y^{*}Ax$
\end_inset
es un producto escalar en
@@ -1499,7 +1505,7 @@ Si lo fuera, las columnas serían linealmente dependientes y existiría
\end_inset
y
-\begin_inset Formula $\Vert x\Vert_{A}:=\sqrt{x^{*}Ax}$
+\begin_inset Formula $\Vert x\Vert_{A}\coloneqq \sqrt{x^{*}Ax}$
\end_inset
es una norma, la
@@ -1523,7 +1529,7 @@ Para
\end_inset
,
-\begin_inset Formula $B:=X^{t}AX\in{\cal M}_{k}$
+\begin_inset Formula $B\coloneqq X^{t}AX\in{\cal M}_{k}$
\end_inset
es PD.
@@ -1734,7 +1740,7 @@ Sea
\end_inset
ortogonal con
-\begin_inset Formula $D:=O^{t}AO$
+\begin_inset Formula $D\coloneqq O^{t}AO$
\end_inset
diagonal.
@@ -1824,7 +1830,7 @@ Sea
\end_inset
es PD,
-\begin_inset Formula $\sqrt{D}:=\text{diag}(\sqrt{D_{11}},\dots,\sqrt{D_{nn}})$
+\begin_inset Formula $\sqrt{D}\coloneqq \text{diag}(\sqrt{D_{11}},\dots,\sqrt{D_{nn}})$
\end_inset
tiene diagonal positiva, y como
@@ -1836,7 +1842,7 @@ Sea
\end_inset
, basta tomar
-\begin_inset Formula $L_{C}:=L\sqrt{D}$
+\begin_inset Formula $L_{C}\coloneqq L\sqrt{D}$
\end_inset
y entonces
@@ -1991,7 +1997,7 @@ a_{2} & b_{2} & c_{2}\\
\end_inset
si
-\begin_inset Formula $\delta_{0},\delta_{1}:=1$
+\begin_inset Formula $\delta_{0},\delta_{1}\coloneqq 1$
\end_inset
y, para
@@ -1999,7 +2005,7 @@ si
\end_inset
,
-\begin_inset Formula $\delta_{k}:=b_{k}\delta_{k-1}-a_{k}c_{k-1}\delta_{k-2}$
+\begin_inset Formula $\delta_{k}\coloneqq b_{k}\delta_{k-1}-a_{k}c_{k-1}\delta_{k-2}$
\end_inset
, entonces
@@ -2131,7 +2137,7 @@ H_{v}a=a-\frac{2}{v^{*}v}vv^{*}a=a-\frac{2v^{*}a}{\Vert v\Vert^{2}}v=a-\frac{2\V
\end_inset
, pero
-\begin_inset Formula $p:=(\Vert a\Vert\cos\alpha)\frac{v}{\Vert v\Vert}$
+\begin_inset Formula $p\coloneqq (\Vert a\Vert\cos\alpha)\frac{v}{\Vert v\Vert}$
\end_inset
es la proyección de
@@ -2208,7 +2214,7 @@ Dados
\end_inset
, las matrices
-\begin_inset Formula $A_{\gamma}:=H_{a+(\gamma,0,\dots,0)}$
+\begin_inset Formula $A_{\gamma}\coloneqq H_{a+(\gamma,0,\dots,0)}$
\end_inset
con
@@ -2246,11 +2252,11 @@ Demostración:
\end_inset
,
-\begin_inset Formula $e_{1}:=(1,0,\dots,0)$
+\begin_inset Formula $e_{1}\coloneqq (1,0,\dots,0)$
\end_inset
y
-\begin_inset Formula $v_{\gamma}:=a+\gamma e_{1}$
+\begin_inset Formula $v_{\gamma}\coloneqq a+\gamma e_{1}$
\end_inset
, entonces
@@ -2350,11 +2356,11 @@ noprefix "false"
\end_inset
haciendo
-\begin_inset Formula $R:=H_{m}\cdots H_{1}A$
+\begin_inset Formula $R\coloneqq H_{m}\cdots H_{1}A$
\end_inset
y
-\begin_inset Formula $Q:=(H_{m}\cdots H_{1})^{-1}=H_{1}^{-1}\cdots H_{m}^{-1}=H_{1}^{*}\cdots H_{m}^{*}$
+\begin_inset Formula $Q\coloneqq (H_{m}\cdots H_{1})^{-1}=H_{1}^{-1}\cdots H_{m}^{-1}=H_{1}^{*}\cdots H_{m}^{*}$
\end_inset
.
@@ -2383,7 +2389,9 @@ times n$.}
\backslash
-Salida{Factorización $(Q,R:=(r_{ij}))$ de $A$.}
+Salida{Factorización $(Q,R
+\backslash
+coloneqq (r_{ij}))$ de $A$.}
\end_layout
\begin_layout Plain Layout
@@ -2722,7 +2730,7 @@ Si
Demostración:
\series default
Sea
-\begin_inset Formula $K:=\{g\in G\mid \Vert f-g\Vert\leq\Vert f\Vert\}$
+\begin_inset Formula $K\coloneqq \{g\in G\mid \Vert f-g\Vert\leq\Vert f\Vert\}$
\end_inset
,
@@ -2923,7 +2931,7 @@ Sean
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $\alpha:=\inf_{h\in C}\Vert h\Vert$
+\begin_inset Formula $\alpha\coloneqq \inf_{h\in C}\Vert h\Vert$
\end_inset
, para
@@ -3280,7 +3288,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $G:=\text{span}(A_{1},\dots,A_{n})$
+\begin_inset Formula $G\coloneqq \text{span}(A_{1},\dots,A_{n})$
\end_inset
, la mejor aproximación
diff --git a/anm/n3.lyx b/anm/n3.lyx
index 518b2a3..992c614 100644
--- a/anm/n3.lyx
+++ b/anm/n3.lyx
@@ -113,7 +113,7 @@ método iterativo de resolución
\end_inset
tal que la solución del sistema es el único punto fijo de
-\begin_inset Formula $\Phi(x):=Tx+c$
+\begin_inset Formula $\Phi(x)\coloneqq Tx+c$
\end_inset
.
@@ -126,11 +126,11 @@ método iterativo de resolución
\end_inset
dada por
-\begin_inset Formula $x_{0}:=x$
+\begin_inset Formula $x_{0}\coloneqq x$
\end_inset
y
-\begin_inset Formula $x_{k+1}:=\Phi(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq\Phi(x_{k})$
\end_inset
converge hacia el punto fijo,
@@ -158,11 +158,11 @@ Sea
\end_inset
, la sucesión
-\begin_inset Formula $x_{0}:=y$
+\begin_inset Formula $x_{0}\coloneqq y$
\end_inset
,
-\begin_inset Formula $x_{k+1}:=Tx_{k}+c$
+\begin_inset Formula $x_{k+1}\coloneqq Tx_{k}+c$
\end_inset
, converge.
@@ -186,7 +186,7 @@ Entonces existe una norma matricial tal que
\end_inset
, y si
-\begin_inset Formula $\Phi(x):=Tx+c$
+\begin_inset Formula $\Phi(x)\coloneqq Tx+c$
\end_inset
,
@@ -227,7 +227,7 @@ Sean
\end_inset
,
-\begin_inset Formula $y:=x-v$
+\begin_inset Formula $y\coloneqq x-v$
\end_inset
y
@@ -293,7 +293,7 @@ Dado un sistema lineal
método iterativo de Richardson
\series default
para una matriz
-\begin_inset Formula $A:=(a_{ij})$
+\begin_inset Formula $A\coloneqq(a_{ij})$
\end_inset
sin ceros en la diagonal consiste en tomar como matriz fácil de invertir
@@ -351,15 +351,15 @@ En adelante,
\begin_layout Standard
Para el método de Jacobi tomamos
-\begin_inset Formula $M:=D$
+\begin_inset Formula $M\coloneqq D$
\end_inset
y
-\begin_inset Formula $N:=-(L+U)$
+\begin_inset Formula $N\coloneqq-(L+U)$
\end_inset
, y nos queda el método iterativo
-\begin_inset Formula $(T_{J}:=-D^{-1}(L+U),D^{-1}b)$
+\begin_inset Formula $(T_{J}\coloneqq-D^{-1}(L+U),D^{-1}b)$
\end_inset
.
@@ -368,7 +368,7 @@ Para el método de Jacobi tomamos
\begin_layout Standard
Para calcular de forma eficiente, en cada iteración calculamos
-\begin_inset Formula $r_{k}:=Ax_{k}-b$
+\begin_inset Formula $r_{k}\coloneqq Ax_{k}-b$
\end_inset
y
@@ -426,15 +426,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\tilde{r}_{ki}}{a_{ii}}=\frac{1}{a_{ii}}\left(b_{i}-\su
\end_inset
Esto es el método
-\begin_inset Formula $(T_{G}:=-(L+D)^{-1}U,(L+D)^{-1}b)$
+\begin_inset Formula $(T_{G}\coloneqq-(L+D)^{-1}U,(L+D)^{-1}b)$
\end_inset
, equivalente a tomar
-\begin_inset Formula $M:=L+D$
+\begin_inset Formula $M\coloneqq L+D$
\end_inset
y
-\begin_inset Formula $N:=-U$
+\begin_inset Formula $N\coloneqq-U$
\end_inset
.
@@ -576,7 +576,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $z:=T_{G}y$
+\begin_inset Formula $z\coloneqq T_{G}y$
\end_inset
, con lo que
@@ -630,7 +630,7 @@ Por tanto
\end_inset
y, tomando
-\begin_inset Formula $y:=(1,\dots,1)_{\infty}$
+\begin_inset Formula $y\coloneqq(1,\dots,1)_{\infty}$
\end_inset
,
@@ -683,7 +683,7 @@ entonces
.
En efecto, sea
-\begin_inset Formula $Q(\lambda):=\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$
+\begin_inset Formula $Q(\lambda)\coloneqq\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$
\end_inset
, es fácil ver que
@@ -696,11 +696,11 @@ entonces
\end_inset
son los ceros de
-\begin_inset Formula $p_{J}(\lambda):=\det(-D^{-1}(L+U)-\lambda I_{n})$
+\begin_inset Formula $p_{J}(\lambda)\coloneqq\det(-D^{-1}(L+U)-\lambda I_{n})$
\end_inset
, que son los mismos que los de
-\begin_inset Formula $q_{J}(\lambda):=\det(L+U+\lambda D)$
+\begin_inset Formula $q_{J}(\lambda)\coloneqq\det(L+U+\lambda D)$
\end_inset
.
@@ -709,11 +709,11 @@ entonces
\end_inset
son los ceros de
-\begin_inset Formula $p_{G}(\lambda):=\det(-(L+D)^{-1}U-\lambda I_{n})$
+\begin_inset Formula $p_{G}(\lambda)\coloneqq\det(-(L+D)^{-1}U-\lambda I_{n})$
\end_inset
, que son los de
-\begin_inset Formula $q_{G}(\lambda):=\det(U+\lambda L+\lambda D)$
+\begin_inset Formula $q_{G}(\lambda)\coloneqq\det(U+\lambda L+\lambda D)$
\end_inset
.
@@ -772,15 +772,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\omega}{a_{ii}}\tilde{r}_{ki}
en el método de Gauss-Seidel.
Entonces el método es
-\begin_inset Formula $(T_{R}(\omega):=(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$
+\begin_inset Formula $(T_{R}(\omega)\coloneqq(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$
\end_inset
, que equivale a tomar
-\begin_inset Formula $M:=\frac{1}{\omega}D+L$
+\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$
\end_inset
y
-\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$
+\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$
\end_inset
.
@@ -877,11 +877,11 @@ Si
Demostración:
\series default
Si
-\begin_inset Formula $M:=\frac{1}{\omega}D+L$
+\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$
\end_inset
y
-\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$
+\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$
\end_inset
,
@@ -907,7 +907,7 @@ Demostración:
.
En dimensión finita,
-\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid \Vert v\Vert_{A}=1\}$
+\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid\Vert v\Vert_{A}=1\}$
\end_inset
.
@@ -924,7 +924,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $w:=M^{-1}Av$
+\begin_inset Formula $w\coloneqq M^{-1}Av$
\end_inset
, entonces
@@ -1007,7 +1007,7 @@ Si
\end_inset
si y sólo si minimiza
-\begin_inset Formula $g(x):=x^{t}Ax-2x^{t}b$
+\begin_inset Formula $g(x)\coloneqq x^{t}Ax-2x^{t}b$
\end_inset
, y para
@@ -1015,7 +1015,7 @@ Si
\end_inset
, el mínimo de
-\begin_inset Formula $h(t):=g(x+tv)$
+\begin_inset Formula $h(t)\coloneqq g(x+tv)$
\end_inset
es
@@ -1171,7 +1171,7 @@ método del descenso rápido
\end_inset
y hacer
-\begin_inset Formula $x_{k+1}:=x_{k}-\alpha\nabla g(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq x_{k}-\alpha\nabla g(x_{k})$
\end_inset
, donde
@@ -1585,7 +1585,7 @@ precondicionamiento
\end_inset
fácil de invertir tal que
-\begin_inset Formula $\tilde{A}:=C^{-1}A(C^{-1})^{t}$
+\begin_inset Formula $\tilde{A}\coloneqq C^{-1}A(C^{-1})^{t}$
\end_inset
es SPD y
@@ -1594,7 +1594,7 @@ precondicionamiento
.
Llamando
-\begin_inset Formula $\tilde{x}:=C^{t}x$
+\begin_inset Formula $\tilde{x}\coloneqq C^{t}x$
\end_inset
, el sistema
diff --git a/anm/n4.lyx b/anm/n4.lyx
index 2e71428..8dc7b08 100644
--- a/anm/n4.lyx
+++ b/anm/n4.lyx
@@ -181,15 +181,15 @@ Sean
\end_inset
las sucesiones dadas por
-\begin_inset Formula $x_{0}:=p$
+\begin_inset Formula $x_{0}\coloneqq p$
\end_inset
,
-\begin_inset Formula $x_{k+1}:=Ax_{k}$
+\begin_inset Formula $x_{k+1}\coloneqq Ax_{k}$
\end_inset
y
-\begin_inset Formula $r_{k}:=\frac{\langle x_{k+1},y\rangle}{\langle x_{k},y\rangle}$
+\begin_inset Formula $r_{k}\coloneqq \frac{\langle x_{k+1},y\rangle}{\langle x_{k},y\rangle}$
\end_inset
, entonces
@@ -214,7 +214,7 @@ Sean
Demostración:
\series default
Sean
-\begin_inset Formula $\phi(x):=\langle x,y\rangle$
+\begin_inset Formula $\phi(x)\coloneqq \langle x,y\rangle$
\end_inset
,
@@ -317,11 +317,11 @@ En la práctica no se calcula
\end_inset
dada por
-\begin_inset Formula $y_{0}:=\frac{x_{0}}{\Vert x_{0}\Vert}$
+\begin_inset Formula $y_{0}\coloneqq \frac{x_{0}}{\Vert x_{0}\Vert}$
\end_inset
e
-\begin_inset Formula $y_{k+1}:=\frac{Ay_{k}}{\Vert Ay_{k}\Vert}$
+\begin_inset Formula $y_{k+1}\coloneqq \frac{Ay_{k}}{\Vert Ay_{k}\Vert}$
\end_inset
, y entonces
@@ -457,7 +457,7 @@ método de Jacobi
de giros en planos determinados por dos vectores de la base canónica de
forma que
-\begin_inset Formula $(A_{k}:=(O_{1}\cdots O_{k})^{t}A(O_{1}\cdots O_{k}))_{k}$
+\begin_inset Formula $(A_{k}\coloneqq (O_{1}\cdots O_{k})^{t}A(O_{1}\cdots O_{k}))_{k}$
\end_inset
, que podemos obtener como
@@ -481,7 +481,7 @@ Sean
\end_inset
,
-\begin_inset Formula $A:=(a_{ij})\in{\cal M}_{n}(\mathbb{R})$
+\begin_inset Formula $A\coloneqq (a_{ij})\in{\cal M}_{n}(\mathbb{R})$
\end_inset
simétrica,
@@ -689,7 +689,7 @@ egroup
\end_inset
y
-\begin_inset Formula $B:=(b_{ij}):=O^{t}AO$
+\begin_inset Formula $B\coloneqq (b_{ij})\coloneqq O^{t}AO$
\end_inset
, entonces:
@@ -839,7 +839,7 @@ de donde se obtiene la primera parte del enunciado.
\end_inset
, y dada
-\begin_inset Formula $C:=(c_{ij})\in{\cal M}_{n}(\mathbb{R})$
+\begin_inset Formula $C\coloneqq (c_{ij})\in{\cal M}_{n}(\mathbb{R})$
\end_inset
,
@@ -885,7 +885,7 @@ Para el
\end_inset
descrito en el apartado anterior, sean
-\begin_inset Formula $x:=\frac{a_{qq}-a_{pp}}{2a_{pq}}$
+\begin_inset Formula $x\coloneqq \frac{a_{qq}-a_{pp}}{2a_{pq}}$
\end_inset
,
@@ -900,11 +900,11 @@ t:=\begin{cases}
\end_inset
-\begin_inset Formula $c:=\frac{1}{\sqrt{1+t^{2}}}$
+\begin_inset Formula $c\coloneqq \frac{1}{\sqrt{1+t^{2}}}$
\end_inset
y
-\begin_inset Formula $s:=\frac{t}{\sqrt{1+t^{2}}}$
+\begin_inset Formula $s\coloneqq \frac{t}{\sqrt{1+t^{2}}}$
\end_inset
, para
@@ -926,11 +926,11 @@ b_{pi}=b_{ip} & =ca_{ip}-sa_{iq}, & b_{qi}=b_{iq} & =sa_{ip}+ca_{iq}, & b_{ij} &
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $x:=\frac{a_{qq}-a_{pp}}{2a_{pq}}$
+\begin_inset Formula $x\coloneqq \frac{a_{qq}-a_{pp}}{2a_{pq}}$
\end_inset
y
-\begin_inset Formula $t:=\tan\theta$
+\begin_inset Formula $t\coloneqq \tan\theta$
\end_inset
.
@@ -1036,7 +1036,9 @@ status open
\backslash
-Entrada{Matriz simétrica real $A:=(a_{ij})$ de tamaño $n$ y nivel de tolerancia
+Entrada{Matriz simétrica real $A
+\backslash
+coloneqq (a_{ij})$ de tamaño $n$ y nivel de tolerancia
a errores $e>0$.}
\end_layout
@@ -1644,7 +1646,7 @@ Para la primera parte del teorema, sean
\end_inset
y
-\begin_inset Formula $\varepsilon_{k}:=\sum_{i\neq j}(a_{kij})^{2}$
+\begin_inset Formula $\varepsilon_{k}\coloneqq \sum_{i\neq j}(a_{kij})^{2}$
\end_inset
.
@@ -1747,7 +1749,7 @@ de donde
\begin_layout Standard
Sea
-\begin_inset Formula $D_{k}:=\text{diag}(a_{k11},\dots,a_{knn})$
+\begin_inset Formula $D_{k}\coloneqq \text{diag}(a_{k11},\dots,a_{knn})$
\end_inset
.
@@ -2096,11 +2098,11 @@ Dada una matriz
\end_inset
como
-\begin_inset Formula $A_{0}:=A$
+\begin_inset Formula $A_{0}\coloneqq A$
\end_inset
y
-\begin_inset Formula $A_{k+1}:=R_{k}Q_{k}$
+\begin_inset Formula $A_{k+1}\coloneqq R_{k}Q_{k}$
\end_inset
, donde
@@ -2119,11 +2121,11 @@ Dada una matriz
\begin_layout Standard
Para obtener una aproximación de los valores propios a partir de una aproximació
n
-\begin_inset Formula $A_{p}:=(u_{ij})$
+\begin_inset Formula $A_{p}\coloneqq (u_{ij})$
\end_inset
de dicha matriz, definimos una matriz
-\begin_inset Formula $V:=(v_{ij})\in{\cal M}_{n}$
+\begin_inset Formula $V\coloneqq (v_{ij})\in{\cal M}_{n}$
\end_inset
dada por
diff --git a/anm/n5.lyx b/anm/n5.lyx
index 9c307a8..046b6a5 100644
--- a/anm/n5.lyx
+++ b/anm/n5.lyx
@@ -319,7 +319,7 @@ Sean
\end_inset
y
-\begin_inset Formula $x_{k+1}:=f(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq f(x_{k})$
\end_inset
converge.
@@ -343,7 +343,7 @@ begin{samepage}
\begin_layout Standard
Sean
-\begin_inset Formula $R:=[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]$
+\begin_inset Formula $R\coloneqq [a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]$
\end_inset
,
@@ -399,7 +399,7 @@ La
aceleración de Gauss-Seidel
\series default
de una iteración de punto fijo consiste en considerar, en vez de
-\begin_inset Formula $x_{k+1}:=g(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq g(x_{k})$
\end_inset
,
@@ -483,11 +483,11 @@ teorema
\end_inset
, la sucesión dada por
-\begin_inset Formula $x_{0}:=x$
+\begin_inset Formula $x_{0}\coloneqq x$
\end_inset
y
-\begin_inset Formula $x_{k+1}:=x_{k}-df(x_{k})^{-1}f(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq x_{k}-df(x_{k})^{-1}f(x_{k})$
\end_inset
converge a
@@ -523,7 +523,7 @@ Demostración
:
\series default
Queremos ver que
-\begin_inset Formula $g(x):=x-df(x)^{-1}f(x)$
+\begin_inset Formula $g(x)\coloneqq x-df(x)^{-1}f(x)$
\end_inset
es contractiva cerca de
@@ -660,7 +660,7 @@ Para
\end_inset
dada por
-\begin_inset Formula $\varphi(t):=f(y+t(x-y))$
+\begin_inset Formula $\varphi(t)\coloneqq f(y+t(x-y))$
\end_inset
, por la regla de la cadena,
@@ -703,7 +703,7 @@ Cuando esto se cumple,
\end_inset
y tomando
-\begin_inset Formula $M:=\frac{K}{2}\sup_{x\in B(\xi,r)}\Vert df(x)^{-1}\Vert$
+\begin_inset Formula $M\coloneqq \frac{K}{2}\sup_{x\in B(\xi,r)}\Vert df(x)^{-1}\Vert$
\end_inset
se obtiene la acotación.
@@ -759,7 +759,7 @@ A_{k}:=A_{k-1}+\frac{1}{\Vert x_{k}-x_{k-1}\Vert_{2}^{2}}f(x_{k})(x_{k}-x_{k-1})
\end_inset
tomando
-\begin_inset Formula $A_{0}:=df(x_{0})$
+\begin_inset Formula $A_{0}\coloneqq df(x_{0})$
\end_inset
.
@@ -1137,7 +1137,7 @@ noprefix "false"
\end_inset
, y consiste en minimizar la función
-\begin_inset Formula $g(x):=\Vert f(x)\Vert_{2}^{2}$
+\begin_inset Formula $g(x)\coloneqq \Vert f(x)\Vert_{2}^{2}$
\end_inset
desplazándonos, en cada iteración, en la dirección de mayor descenso en