aboutsummaryrefslogtreecommitdiff
path: root/anm/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /anm/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'anm/n3.lyx')
-rw-r--r--anm/n3.lyx68
1 files changed, 34 insertions, 34 deletions
diff --git a/anm/n3.lyx b/anm/n3.lyx
index 518b2a3..992c614 100644
--- a/anm/n3.lyx
+++ b/anm/n3.lyx
@@ -113,7 +113,7 @@ método iterativo de resolución
\end_inset
tal que la solución del sistema es el único punto fijo de
-\begin_inset Formula $\Phi(x):=Tx+c$
+\begin_inset Formula $\Phi(x)\coloneqq Tx+c$
\end_inset
.
@@ -126,11 +126,11 @@ método iterativo de resolución
\end_inset
dada por
-\begin_inset Formula $x_{0}:=x$
+\begin_inset Formula $x_{0}\coloneqq x$
\end_inset
y
-\begin_inset Formula $x_{k+1}:=\Phi(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq\Phi(x_{k})$
\end_inset
converge hacia el punto fijo,
@@ -158,11 +158,11 @@ Sea
\end_inset
, la sucesión
-\begin_inset Formula $x_{0}:=y$
+\begin_inset Formula $x_{0}\coloneqq y$
\end_inset
,
-\begin_inset Formula $x_{k+1}:=Tx_{k}+c$
+\begin_inset Formula $x_{k+1}\coloneqq Tx_{k}+c$
\end_inset
, converge.
@@ -186,7 +186,7 @@ Entonces existe una norma matricial tal que
\end_inset
, y si
-\begin_inset Formula $\Phi(x):=Tx+c$
+\begin_inset Formula $\Phi(x)\coloneqq Tx+c$
\end_inset
,
@@ -227,7 +227,7 @@ Sean
\end_inset
,
-\begin_inset Formula $y:=x-v$
+\begin_inset Formula $y\coloneqq x-v$
\end_inset
y
@@ -293,7 +293,7 @@ Dado un sistema lineal
método iterativo de Richardson
\series default
para una matriz
-\begin_inset Formula $A:=(a_{ij})$
+\begin_inset Formula $A\coloneqq(a_{ij})$
\end_inset
sin ceros en la diagonal consiste en tomar como matriz fácil de invertir
@@ -351,15 +351,15 @@ En adelante,
\begin_layout Standard
Para el método de Jacobi tomamos
-\begin_inset Formula $M:=D$
+\begin_inset Formula $M\coloneqq D$
\end_inset
y
-\begin_inset Formula $N:=-(L+U)$
+\begin_inset Formula $N\coloneqq-(L+U)$
\end_inset
, y nos queda el método iterativo
-\begin_inset Formula $(T_{J}:=-D^{-1}(L+U),D^{-1}b)$
+\begin_inset Formula $(T_{J}\coloneqq-D^{-1}(L+U),D^{-1}b)$
\end_inset
.
@@ -368,7 +368,7 @@ Para el método de Jacobi tomamos
\begin_layout Standard
Para calcular de forma eficiente, en cada iteración calculamos
-\begin_inset Formula $r_{k}:=Ax_{k}-b$
+\begin_inset Formula $r_{k}\coloneqq Ax_{k}-b$
\end_inset
y
@@ -426,15 +426,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\tilde{r}_{ki}}{a_{ii}}=\frac{1}{a_{ii}}\left(b_{i}-\su
\end_inset
Esto es el método
-\begin_inset Formula $(T_{G}:=-(L+D)^{-1}U,(L+D)^{-1}b)$
+\begin_inset Formula $(T_{G}\coloneqq-(L+D)^{-1}U,(L+D)^{-1}b)$
\end_inset
, equivalente a tomar
-\begin_inset Formula $M:=L+D$
+\begin_inset Formula $M\coloneqq L+D$
\end_inset
y
-\begin_inset Formula $N:=-U$
+\begin_inset Formula $N\coloneqq-U$
\end_inset
.
@@ -576,7 +576,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $z:=T_{G}y$
+\begin_inset Formula $z\coloneqq T_{G}y$
\end_inset
, con lo que
@@ -630,7 +630,7 @@ Por tanto
\end_inset
y, tomando
-\begin_inset Formula $y:=(1,\dots,1)_{\infty}$
+\begin_inset Formula $y\coloneqq(1,\dots,1)_{\infty}$
\end_inset
,
@@ -683,7 +683,7 @@ entonces
.
En efecto, sea
-\begin_inset Formula $Q(\lambda):=\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$
+\begin_inset Formula $Q(\lambda)\coloneqq\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$
\end_inset
, es fácil ver que
@@ -696,11 +696,11 @@ entonces
\end_inset
son los ceros de
-\begin_inset Formula $p_{J}(\lambda):=\det(-D^{-1}(L+U)-\lambda I_{n})$
+\begin_inset Formula $p_{J}(\lambda)\coloneqq\det(-D^{-1}(L+U)-\lambda I_{n})$
\end_inset
, que son los mismos que los de
-\begin_inset Formula $q_{J}(\lambda):=\det(L+U+\lambda D)$
+\begin_inset Formula $q_{J}(\lambda)\coloneqq\det(L+U+\lambda D)$
\end_inset
.
@@ -709,11 +709,11 @@ entonces
\end_inset
son los ceros de
-\begin_inset Formula $p_{G}(\lambda):=\det(-(L+D)^{-1}U-\lambda I_{n})$
+\begin_inset Formula $p_{G}(\lambda)\coloneqq\det(-(L+D)^{-1}U-\lambda I_{n})$
\end_inset
, que son los de
-\begin_inset Formula $q_{G}(\lambda):=\det(U+\lambda L+\lambda D)$
+\begin_inset Formula $q_{G}(\lambda)\coloneqq\det(U+\lambda L+\lambda D)$
\end_inset
.
@@ -772,15 +772,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\omega}{a_{ii}}\tilde{r}_{ki}
en el método de Gauss-Seidel.
Entonces el método es
-\begin_inset Formula $(T_{R}(\omega):=(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$
+\begin_inset Formula $(T_{R}(\omega)\coloneqq(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$
\end_inset
, que equivale a tomar
-\begin_inset Formula $M:=\frac{1}{\omega}D+L$
+\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$
\end_inset
y
-\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$
+\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$
\end_inset
.
@@ -877,11 +877,11 @@ Si
Demostración:
\series default
Si
-\begin_inset Formula $M:=\frac{1}{\omega}D+L$
+\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$
\end_inset
y
-\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$
+\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$
\end_inset
,
@@ -907,7 +907,7 @@ Demostración:
.
En dimensión finita,
-\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid \Vert v\Vert_{A}=1\}$
+\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid\Vert v\Vert_{A}=1\}$
\end_inset
.
@@ -924,7 +924,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $w:=M^{-1}Av$
+\begin_inset Formula $w\coloneqq M^{-1}Av$
\end_inset
, entonces
@@ -1007,7 +1007,7 @@ Si
\end_inset
si y sólo si minimiza
-\begin_inset Formula $g(x):=x^{t}Ax-2x^{t}b$
+\begin_inset Formula $g(x)\coloneqq x^{t}Ax-2x^{t}b$
\end_inset
, y para
@@ -1015,7 +1015,7 @@ Si
\end_inset
, el mínimo de
-\begin_inset Formula $h(t):=g(x+tv)$
+\begin_inset Formula $h(t)\coloneqq g(x+tv)$
\end_inset
es
@@ -1171,7 +1171,7 @@ método del descenso rápido
\end_inset
y hacer
-\begin_inset Formula $x_{k+1}:=x_{k}-\alpha\nabla g(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq x_{k}-\alpha\nabla g(x_{k})$
\end_inset
, donde
@@ -1585,7 +1585,7 @@ precondicionamiento
\end_inset
fácil de invertir tal que
-\begin_inset Formula $\tilde{A}:=C^{-1}A(C^{-1})^{t}$
+\begin_inset Formula $\tilde{A}\coloneqq C^{-1}A(C^{-1})^{t}$
\end_inset
es SPD y
@@ -1594,7 +1594,7 @@ precondicionamiento
.
Llamando
-\begin_inset Formula $\tilde{x}:=C^{t}x$
+\begin_inset Formula $\tilde{x}\coloneqq C^{t}x$
\end_inset
, el sistema