diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /anm/n3.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'anm/n3.lyx')
| -rw-r--r-- | anm/n3.lyx | 68 |
1 files changed, 34 insertions, 34 deletions
@@ -113,7 +113,7 @@ método iterativo de resolución \end_inset tal que la solución del sistema es el único punto fijo de -\begin_inset Formula $\Phi(x):=Tx+c$ +\begin_inset Formula $\Phi(x)\coloneqq Tx+c$ \end_inset . @@ -126,11 +126,11 @@ método iterativo de resolución \end_inset dada por -\begin_inset Formula $x_{0}:=x$ +\begin_inset Formula $x_{0}\coloneqq x$ \end_inset y -\begin_inset Formula $x_{k+1}:=\Phi(x_{k})$ +\begin_inset Formula $x_{k+1}\coloneqq\Phi(x_{k})$ \end_inset converge hacia el punto fijo, @@ -158,11 +158,11 @@ Sea \end_inset , la sucesión -\begin_inset Formula $x_{0}:=y$ +\begin_inset Formula $x_{0}\coloneqq y$ \end_inset , -\begin_inset Formula $x_{k+1}:=Tx_{k}+c$ +\begin_inset Formula $x_{k+1}\coloneqq Tx_{k}+c$ \end_inset , converge. @@ -186,7 +186,7 @@ Entonces existe una norma matricial tal que \end_inset , y si -\begin_inset Formula $\Phi(x):=Tx+c$ +\begin_inset Formula $\Phi(x)\coloneqq Tx+c$ \end_inset , @@ -227,7 +227,7 @@ Sean \end_inset , -\begin_inset Formula $y:=x-v$ +\begin_inset Formula $y\coloneqq x-v$ \end_inset y @@ -293,7 +293,7 @@ Dado un sistema lineal método iterativo de Richardson \series default para una matriz -\begin_inset Formula $A:=(a_{ij})$ +\begin_inset Formula $A\coloneqq(a_{ij})$ \end_inset sin ceros en la diagonal consiste en tomar como matriz fácil de invertir @@ -351,15 +351,15 @@ En adelante, \begin_layout Standard Para el método de Jacobi tomamos -\begin_inset Formula $M:=D$ +\begin_inset Formula $M\coloneqq D$ \end_inset y -\begin_inset Formula $N:=-(L+U)$ +\begin_inset Formula $N\coloneqq-(L+U)$ \end_inset , y nos queda el método iterativo -\begin_inset Formula $(T_{J}:=-D^{-1}(L+U),D^{-1}b)$ +\begin_inset Formula $(T_{J}\coloneqq-D^{-1}(L+U),D^{-1}b)$ \end_inset . @@ -368,7 +368,7 @@ Para el método de Jacobi tomamos \begin_layout Standard Para calcular de forma eficiente, en cada iteración calculamos -\begin_inset Formula $r_{k}:=Ax_{k}-b$ +\begin_inset Formula $r_{k}\coloneqq Ax_{k}-b$ \end_inset y @@ -426,15 +426,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\tilde{r}_{ki}}{a_{ii}}=\frac{1}{a_{ii}}\left(b_{i}-\su \end_inset Esto es el método -\begin_inset Formula $(T_{G}:=-(L+D)^{-1}U,(L+D)^{-1}b)$ +\begin_inset Formula $(T_{G}\coloneqq-(L+D)^{-1}U,(L+D)^{-1}b)$ \end_inset , equivalente a tomar -\begin_inset Formula $M:=L+D$ +\begin_inset Formula $M\coloneqq L+D$ \end_inset y -\begin_inset Formula $N:=-U$ +\begin_inset Formula $N\coloneqq-U$ \end_inset . @@ -576,7 +576,7 @@ Demostración: \end_inset y -\begin_inset Formula $z:=T_{G}y$ +\begin_inset Formula $z\coloneqq T_{G}y$ \end_inset , con lo que @@ -630,7 +630,7 @@ Por tanto \end_inset y, tomando -\begin_inset Formula $y:=(1,\dots,1)_{\infty}$ +\begin_inset Formula $y\coloneqq(1,\dots,1)_{\infty}$ \end_inset , @@ -683,7 +683,7 @@ entonces . En efecto, sea -\begin_inset Formula $Q(\lambda):=\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$ +\begin_inset Formula $Q(\lambda)\coloneqq\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$ \end_inset , es fácil ver que @@ -696,11 +696,11 @@ entonces \end_inset son los ceros de -\begin_inset Formula $p_{J}(\lambda):=\det(-D^{-1}(L+U)-\lambda I_{n})$ +\begin_inset Formula $p_{J}(\lambda)\coloneqq\det(-D^{-1}(L+U)-\lambda I_{n})$ \end_inset , que son los mismos que los de -\begin_inset Formula $q_{J}(\lambda):=\det(L+U+\lambda D)$ +\begin_inset Formula $q_{J}(\lambda)\coloneqq\det(L+U+\lambda D)$ \end_inset . @@ -709,11 +709,11 @@ entonces \end_inset son los ceros de -\begin_inset Formula $p_{G}(\lambda):=\det(-(L+D)^{-1}U-\lambda I_{n})$ +\begin_inset Formula $p_{G}(\lambda)\coloneqq\det(-(L+D)^{-1}U-\lambda I_{n})$ \end_inset , que son los de -\begin_inset Formula $q_{G}(\lambda):=\det(U+\lambda L+\lambda D)$ +\begin_inset Formula $q_{G}(\lambda)\coloneqq\det(U+\lambda L+\lambda D)$ \end_inset . @@ -772,15 +772,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\omega}{a_{ii}}\tilde{r}_{ki} en el método de Gauss-Seidel. Entonces el método es -\begin_inset Formula $(T_{R}(\omega):=(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$ +\begin_inset Formula $(T_{R}(\omega)\coloneqq(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$ \end_inset , que equivale a tomar -\begin_inset Formula $M:=\frac{1}{\omega}D+L$ +\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$ \end_inset y -\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$ +\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$ \end_inset . @@ -877,11 +877,11 @@ Si Demostración: \series default Si -\begin_inset Formula $M:=\frac{1}{\omega}D+L$ +\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$ \end_inset y -\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$ +\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$ \end_inset , @@ -907,7 +907,7 @@ Demostración: . En dimensión finita, -\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid \Vert v\Vert_{A}=1\}$ +\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid\Vert v\Vert_{A}=1\}$ \end_inset . @@ -924,7 +924,7 @@ Demostración: \end_inset y -\begin_inset Formula $w:=M^{-1}Av$ +\begin_inset Formula $w\coloneqq M^{-1}Av$ \end_inset , entonces @@ -1007,7 +1007,7 @@ Si \end_inset si y sólo si minimiza -\begin_inset Formula $g(x):=x^{t}Ax-2x^{t}b$ +\begin_inset Formula $g(x)\coloneqq x^{t}Ax-2x^{t}b$ \end_inset , y para @@ -1015,7 +1015,7 @@ Si \end_inset , el mínimo de -\begin_inset Formula $h(t):=g(x+tv)$ +\begin_inset Formula $h(t)\coloneqq g(x+tv)$ \end_inset es @@ -1171,7 +1171,7 @@ método del descenso rápido \end_inset y hacer -\begin_inset Formula $x_{k+1}:=x_{k}-\alpha\nabla g(x_{k})$ +\begin_inset Formula $x_{k+1}\coloneqq x_{k}-\alpha\nabla g(x_{k})$ \end_inset , donde @@ -1585,7 +1585,7 @@ precondicionamiento \end_inset fácil de invertir tal que -\begin_inset Formula $\tilde{A}:=C^{-1}A(C^{-1})^{t}$ +\begin_inset Formula $\tilde{A}\coloneqq C^{-1}A(C^{-1})^{t}$ \end_inset es SPD y @@ -1594,7 +1594,7 @@ precondicionamiento . Llamando -\begin_inset Formula $\tilde{x}:=C^{t}x$ +\begin_inset Formula $\tilde{x}\coloneqq C^{t}x$ \end_inset , el sistema |
