aboutsummaryrefslogtreecommitdiff
path: root/anm/n5.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /anm/n5.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'anm/n5.lyx')
-rw-r--r--anm/n5.lyx20
1 files changed, 10 insertions, 10 deletions
diff --git a/anm/n5.lyx b/anm/n5.lyx
index 9c307a8..046b6a5 100644
--- a/anm/n5.lyx
+++ b/anm/n5.lyx
@@ -319,7 +319,7 @@ Sean
\end_inset
y
-\begin_inset Formula $x_{k+1}:=f(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq f(x_{k})$
\end_inset
converge.
@@ -343,7 +343,7 @@ begin{samepage}
\begin_layout Standard
Sean
-\begin_inset Formula $R:=[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]$
+\begin_inset Formula $R\coloneqq [a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]$
\end_inset
,
@@ -399,7 +399,7 @@ La
aceleración de Gauss-Seidel
\series default
de una iteración de punto fijo consiste en considerar, en vez de
-\begin_inset Formula $x_{k+1}:=g(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq g(x_{k})$
\end_inset
,
@@ -483,11 +483,11 @@ teorema
\end_inset
, la sucesión dada por
-\begin_inset Formula $x_{0}:=x$
+\begin_inset Formula $x_{0}\coloneqq x$
\end_inset
y
-\begin_inset Formula $x_{k+1}:=x_{k}-df(x_{k})^{-1}f(x_{k})$
+\begin_inset Formula $x_{k+1}\coloneqq x_{k}-df(x_{k})^{-1}f(x_{k})$
\end_inset
converge a
@@ -523,7 +523,7 @@ Demostración
:
\series default
Queremos ver que
-\begin_inset Formula $g(x):=x-df(x)^{-1}f(x)$
+\begin_inset Formula $g(x)\coloneqq x-df(x)^{-1}f(x)$
\end_inset
es contractiva cerca de
@@ -660,7 +660,7 @@ Para
\end_inset
dada por
-\begin_inset Formula $\varphi(t):=f(y+t(x-y))$
+\begin_inset Formula $\varphi(t)\coloneqq f(y+t(x-y))$
\end_inset
, por la regla de la cadena,
@@ -703,7 +703,7 @@ Cuando esto se cumple,
\end_inset
y tomando
-\begin_inset Formula $M:=\frac{K}{2}\sup_{x\in B(\xi,r)}\Vert df(x)^{-1}\Vert$
+\begin_inset Formula $M\coloneqq \frac{K}{2}\sup_{x\in B(\xi,r)}\Vert df(x)^{-1}\Vert$
\end_inset
se obtiene la acotación.
@@ -759,7 +759,7 @@ A_{k}:=A_{k-1}+\frac{1}{\Vert x_{k}-x_{k-1}\Vert_{2}^{2}}f(x_{k})(x_{k}-x_{k-1})
\end_inset
tomando
-\begin_inset Formula $A_{0}:=df(x_{0})$
+\begin_inset Formula $A_{0}\coloneqq df(x_{0})$
\end_inset
.
@@ -1137,7 +1137,7 @@ noprefix "false"
\end_inset
, y consiste en minimizar la función
-\begin_inset Formula $g(x):=\Vert f(x)\Vert_{2}^{2}$
+\begin_inset Formula $g(x)\coloneqq \Vert f(x)\Vert_{2}^{2}$
\end_inset
desplazándonos, en cada iteración, en la dirección de mayor descenso en