diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /bd/n6.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'bd/n6.lyx')
| -rw-r--r-- | bd/n6.lyx | 32 |
1 files changed, 16 insertions, 16 deletions
@@ -4442,7 +4442,7 @@ grado \end_inset a -\begin_inset Formula $\text{gr}R:=|T|$ +\begin_inset Formula $\text{gr}R\coloneqq |T|$ \end_inset y @@ -4454,7 +4454,7 @@ dominio \end_inset a -\begin_inset Formula $\text{dom}R_{i}:=T_{i}$ +\begin_inset Formula $\text{dom}R_{i}\coloneqq T_{i}$ \end_inset . @@ -4524,7 +4524,7 @@ Unión \end_inset , -\begin_inset Formula $R\cup S:=(R\cup S,T,N)$ +\begin_inset Formula $R\cup S\coloneqq (R\cup S,T,N)$ \end_inset . @@ -4540,7 +4540,7 @@ Intersección \end_inset , -\begin_inset Formula $R\cap S:=(R\cap S,T,N)$ +\begin_inset Formula $R\cap S\coloneqq (R\cap S,T,N)$ \end_inset . @@ -4556,7 +4556,7 @@ Diferencia \end_inset , -\begin_inset Formula $R-S:=(R\setminus S,T,N)$ +\begin_inset Formula $R-S\coloneqq (R\setminus S,T,N)$ \end_inset . @@ -4600,7 +4600,7 @@ Cuando \end_inset inclusiones, entonces -\begin_inset Formula $R\times S:=(R,T,L(N))\times(S,U,R(M))$ +\begin_inset Formula $R\times S\coloneqq (R,T,L(N))\times(S,U,R(M))$ \end_inset . @@ -4639,7 +4639,7 @@ condición \end_inset es una condición, -\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$ +\begin_inset Formula $\sigma_{C}(R)\coloneqq (\{r\in R\mid C(r)\},T,N)$ \end_inset , donde @@ -4754,7 +4754,7 @@ condición de reunión \end_inset es una condición de reunión, -\begin_inset Formula $R\bowtie_{C}S:=\sigma_{C}(R\times S)$ +\begin_inset Formula $R\bowtie_{C}S\coloneqq \sigma_{C}(R\times S)$ \end_inset . @@ -4768,7 +4768,7 @@ equi-reunión \series default . Definimos también -\begin_inset Formula $R\bowtie S:=R\times S$ +\begin_inset Formula $R\bowtie S\coloneqq R\times S$ \end_inset . @@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa Reunión natural \series default : Sea -\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$ +\begin_inset Formula $\{j_{1},\dots,j_{p}\}\coloneqq \{j\mid M_{j}\notin\{N_{i}\}\}$ \end_inset , si para @@ -4819,7 +4819,7 @@ R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{ Reunión externa \series default : Sea -\begin_inset Formula $N_{k}:=\{\mathtt{NULL}\}^{k}$ +\begin_inset Formula $N_{k}\coloneqq \{\mathtt{NULL}\}^{k}$ \end_inset . @@ -4836,7 +4836,7 @@ reunión externa izquierda \end_inset como -\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$ +\begin_inset Formula $R]\bowtie_{C}S\coloneqq R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$ \end_inset , la @@ -4844,7 +4844,7 @@ reunión externa izquierda reunión externa derecha \series default como -\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$ +\begin_inset Formula $R\bowtie[_{C}S\coloneqq R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$ \end_inset y la @@ -4852,7 +4852,7 @@ reunión externa derecha reunión externa completa \series default como -\begin_inset Formula $R]\bowtie[_{C}S:=(R]\bowtie_{C}S)\cup(R\bowtie[_{C}S)$ +\begin_inset Formula $R]\bowtie[_{C}S\coloneqq (R]\bowtie_{C}S)\cup(R\bowtie[_{C}S)$ \end_inset . @@ -4864,7 +4864,7 @@ reunión externa completa División \series default : Si -\begin_inset Formula $N:=(N_{1},\dots,N_{n},M_{1},\dots,M_{m})$ +\begin_inset Formula $N\coloneqq (N_{1},\dots,N_{n},M_{1},\dots,M_{m})$ \end_inset , entonces @@ -4910,7 +4910,7 @@ Funciones de agregados es el nombre de una de estas funciones, definimos la función de agregados -\begin_inset Formula $O_{N_{i}}(R):=O_{r\in R,r_{i}\neq\mathtt{NULL}}r_{i}$ +\begin_inset Formula $O_{N_{i}}(R)\coloneqq O_{r\in R,r_{i}\neq\mathtt{NULL}}r_{i}$ \end_inset . |
