diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /fuvr1 | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'fuvr1')
| -rw-r--r-- | fuvr1/n.lyx | 188 | ||||
| -rw-r--r-- | fuvr1/n1.lyx | 2278 | ||||
| -rw-r--r-- | fuvr1/n2.lyx | 5306 | ||||
| -rw-r--r-- | fuvr1/n3.lyx | 2202 |
4 files changed, 9974 insertions, 0 deletions
diff --git a/fuvr1/n.lyx b/fuvr1/n.lyx new file mode 100644 index 0000000..7998eb4 --- /dev/null +++ b/fuvr1/n.lyx @@ -0,0 +1,188 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Funciones de una variable real I +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2017} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Análisis Matemático I, J. + M. + Mira & S. + Sánchez-Pedreño. +\end_layout + +\begin_layout Itemize +Funciones reales de una variable real: Notas de clase, Bernardo Cascales, + Luis Oncina & Salvador Sánchez-Pedreño (Curso 2017–18). +\end_layout + +\begin_layout Chapter +Números reales y complejos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Sucesiones numéricas +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n2.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Continuidad de funciones +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n3.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/fuvr1/n1.lyx b/fuvr1/n1.lyx new file mode 100644 index 0000000..c26556f --- /dev/null +++ b/fuvr1/n1.lyx @@ -0,0 +1,2278 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures false +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Definición axiomática de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es el cuerpo conmutativo totalmente ordenado y completo. +\end_layout + +\begin_layout Subsection +Cuerpo conmutativo +\end_layout + +\begin_layout Standard +Conjunto con dos operaciones internas: suma ( +\begin_inset Formula $\mathbb{K}\times\mathbb{K}\rightarrow\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $(x,y)\mapsto x+y$ +\end_inset + +) y producto ( +\begin_inset Formula $\mathbb{K}\times\mathbb{K}\rightarrow\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $(x,y)\mapsto x\cdot y$ +\end_inset + +), con las siguientes propiedades: +\begin_inset Formula $\forall a,b,c\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Asociativa de la suma: +\series default + +\begin_inset Formula $a+(b+c)=(a+b)+c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Conmutativa de la suma: +\begin_inset Formula $a+b=b+a$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Elemento neutro para la suma +\series default + o +\series bold +nulo: +\series default + +\begin_inset Formula $\exists!0\in\mathbb{K}:\forall a\in\mathbb{K},0+a=a$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro +\begin_inset Formula $0$ +\end_inset + + ( +\begin_inset Formula $0'$ +\end_inset + +), entonces +\begin_inset Formula $0=0+0'=0'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Inverso para la suma +\series default + u +\series bold +opuesto: +\series default + +\begin_inset Formula $\exists!a':a+a'=0$ +\end_inset + +. + +\begin_inset Formula $a':=-a$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro opuesto +\begin_inset Formula $a''$ +\end_inset + +, entonces +\begin_inset Formula $a'=0+a'=(a''+a)+a'=a''+(a+a')=a''+0=a''$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Asociativa del producto: +\series default + +\begin_inset Formula $a\cdot(b\cdot c)=(a\cdot b)\cdot c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Conmutativa del producto: +\series default + +\begin_inset Formula $a\cdot b=b\cdot a$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Elemento neutro para el producto +\series default + o +\series bold +unidad: +\series default + +\begin_inset Formula $\exists!1\in\mathbb{K}:\forall a\in K,1\cdot a=a$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro +\begin_inset Formula $1$ +\end_inset + + ( +\begin_inset Formula $1'$ +\end_inset + +), entonces +\begin_inset Formula $1=1\cdot1'=1'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Inverso para el producto: +\series default + +\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a'':a\cdot a''=1$ +\end_inset + +; +\begin_inset Formula $a'':=\frac{1}{a}:=a^{-1}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro +\begin_inset Formula $a''$ +\end_inset + + ( +\begin_inset Formula $a'$ +\end_inset + +), entonces +\begin_inset Formula $a''=1\cdot a''=(a'\cdot a)\cdot a''=a'\cdot(a\cdot a'')=a'\cdot1=a'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Distributiva: +\series default + +\begin_inset Formula $a\cdot(b+c)=a\cdot b+a\cdot c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí podemos deducir que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a=b\iff a-b=0$ +\end_inset + +; +\begin_inset Formula $b\neq0\implies(a=b\iff a\cdot b^{-1}=1)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a=b\iff a+(-b)=b+(-b)\iff a-b=0 +\] + +\end_inset + + +\begin_inset Formula +\[ +b\neq0\implies\exists b^{-1}\implies(a=b\iff a\cdot b^{-1}=b\cdot b^{-1}=1) +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\cdot0=0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\cdot0+0=a\cdot0=a\cdot(0+0)=a\cdot0+a\cdot0\implies-a\cdot0+a\cdot0=-a\cdot0+a\cdot0+a\cdot0\implies0=a\cdot0 +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(-a)\cdot b=-(ab)$ +\end_inset + +; +\begin_inset Formula $(-1)\cdot a=-a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +(-a)\cdot b+a\cdot b=(-a+a)\cdot b=0\cdot b=0 +\] + +\end_inset + + +\begin_inset Formula +\[ +(-1)\cdot a=-(1\cdot a)=-a +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Totalmente ordenado +\end_layout + +\begin_layout Standard +Aquel con relación binaria +\begin_inset Formula $\leq$ +\end_inset + + con las siguientes propiedades: +\begin_inset Formula $\forall x,y,z\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Reflexiva: +\series default + +\begin_inset Formula $x\leq x$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Antisimétrica: +\series default + +\begin_inset Formula $x\leq y\land y\leq x\iff x=y$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Transitiva: +\series default + +\begin_inset Formula $x\leq y\land y\leq z\implies x\leq z$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Orden total: +\series default + +\begin_inset Formula $x\leq y\lor y\leq x$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $x\leq y\implies x+z\leq y+z$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $x\leq y\land0\leq z\implies x\cdot z\leq y\cdot z$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una relación binaria que cumple las propiedades 1–3 se denomina de +\series bold +orden. + +\series default + Si también cumple (4), de +\series bold +orden total. + +\series default + El conjunto de todas definen un +\series bold +cuerpo totalmente ordenado. +\end_layout + +\begin_layout Standard +Notación: +\begin_inset Formula $x<y\iff y>x\iff x\leq y\land x\neq y$ +\end_inset + +; +\begin_inset Formula $x\geq y\iff y\leq x$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos deducir que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c<0\iff-c>0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +c<0\iff c+(-c)<-c\iff0<-c +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\leq b\land c\leq d\implies a+c\leq b+d$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\begin{array}{c} +a\leq b\implies a+c\leq b+c\\ +c\leq d\implies b+c\leq b+d +\end{array}\implies a+c\leq b+d +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\leq b\iff-a\geq-b$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\leq b\iff a+(-a)+(-b)\leq b+(-b)+(-a)\iff-b\leq-a +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c<0\implies(a\leq b\iff ca\geq cb)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +c<0\implies-c>0\implies(-c)a\leq(-c)b\implies-(ca)\leq-(cb)\implies ca\geq cb +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\neq0\implies a\cdot a>0$ +\end_inset + +; +\begin_inset Formula $1\neq0\implies1\geq0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\cdot a\neq0;\ \begin{cases} +a\geq0 & \implies a\cdot a\geq a\cdot0=0\\ +a\leq0 & \implies a\cdot a\geq a\cdot0=0 +\end{cases}\implies a\cdot a>0 +\] + +\end_inset + + +\begin_inset Formula +\[ +0\neq1\land1=1\cdot1\implies1>0 +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a>0\iff a^{-1}>0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Supongamos +\begin_inset Formula $a^{-1}\leq0$ +\end_inset + + y +\begin_inset Formula $a>0$ +\end_inset + +. + Entonces, +\begin_inset Formula $1=a\cdot a^{-1}\leq0$ +\end_inset + +. + Pero +\begin_inset Formula $1\nleq0\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b>0\implies(a\leq b\implies a^{-1}\leq b^{-1})$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\geq b\implies a^{-1}\cdot a\geq b\cdot a^{-1}\implies1\geq b\cdot a^{-1}\implies b^{-1}\geq b^{-1}(b\cdot a^{-1})=a^{-1}\implies b^{-1}\geq a^{-1} +\] + +\end_inset + +El recíproco es cierto si +\begin_inset Formula $a>0$ +\end_inset + + también, pues en el último paso multiplicaríamos por +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Completo +\end_layout + +\begin_layout Standard +Aquel que cumple el +\series bold +axioma del supremo: +\series default + todo subconjunto no vacío de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + acotado superiormente tiene supremo. + Un conjunto +\begin_inset Formula $\emptyset\neq A\subseteq\mathbb{R}$ +\end_inset + + está acotado superiormente si +\begin_inset Formula $\exists M\in\mathbb{R}:\forall a\in A,a\leq M$ +\end_inset + +, entonces +\begin_inset Formula $M$ +\end_inset + + es cota superior de +\begin_inset Formula $A$ +\end_inset + +. + +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + es el supremo de +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $\alpha=\sup A$ +\end_inset + +) si es su menor cota superior, y cumple que +\begin_inset Formula $\forall\varepsilon>0,\exists a\in A:\alpha-\varepsilon<a\leq\alpha$ +\end_inset + +. + Cuando +\begin_inset Formula $\alpha\in A$ +\end_inset + +, se le llama también máximo. +\end_layout + +\begin_layout Standard +Igualmente, un subconjunto +\begin_inset Formula $\emptyset\neq A\subseteq\mathbb{R}$ +\end_inset + + está acotado inferiormente si +\begin_inset Formula $\exists M\in\mathbb{R}:\forall a\in A,M\leq a$ +\end_inset + +, entonces +\begin_inset Formula $M$ +\end_inset + + es cota inferior de +\begin_inset Formula $A$ +\end_inset + +. + +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + es el ínfimo de +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $\alpha=\inf A$ +\end_inset + +) si es su mayor cota inferior. + Todo cuerpo que verifica el axioma del supremo también cumple que todo + subconjunto no vacío acotado inferiormente tiene ínfimo. + +\series bold +Demostración: +\series default + si +\begin_inset Formula $A$ +\end_inset + + está acotado inferiormente por +\begin_inset Formula $\alpha$ +\end_inset + +, +\begin_inset Formula $-A=\{-a\}_{a\in A}$ +\end_inset + + está acotado superiormente por +\begin_inset Formula $-\alpha$ +\end_inset + +, y si +\begin_inset Formula $\beta$ +\end_inset + + es su supremo, entonces +\begin_inset Formula $-\beta$ +\end_inset + + será el ínfimo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Section +Otras propiedades de los números ( +\begin_inset Formula $\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + y +\begin_inset Formula $\mathbb{R}$ +\end_inset + +) +\end_layout + +\begin_layout Standard +Un subconjunto +\begin_inset Formula $I\subseteq\mathbb{K}$ +\end_inset + + es +\series bold + inductivo +\series default + si +\begin_inset Formula $1\in I$ +\end_inset + + y +\begin_inset Formula $n\in I\implies n+1\in I$ +\end_inset + +. + Todo cuerpo o intersección de conjuntos inductivos es un conjunto inductivo. + Ahora tomemos el +\begin_inset Quotes cld +\end_inset + +bicho +\begin_inset Quotes crd +\end_inset + + +\begin_inset Formula $\bigcap\{I:I\text{ es un conjunto inductivo de }\mathbb{R}\}$ +\end_inset + +, la intersección de todos los conjuntos inductivos y por tanto el más pequeño + de ellos. + Así, el conjunto de +\series bold +números naturales +\series default + +\begin_inset Formula $\mathbb{N}:=\text{bicho}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos definir +\begin_inset Formula $2=1+1$ +\end_inset + +, +\begin_inset Formula $3=2+1$ +\end_inset + +, +\begin_inset Formula $4=3+1$ +\end_inset + +, etc. + Propiedades +\begin_inset Quotes cld +\end_inset + +obvias +\begin_inset Quotes crd +\end_inset + + de los naturales: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n<1,n\notin\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n\in\mathbb{N},\nexists x\in\mathbb{N}:n<x<n+1$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $n=1$ +\end_inset + +: Suponemos +\begin_inset Formula $\exists r\in\mathbb{N}:1<r<2=1+1$ +\end_inset + +. + Entonces +\begin_inset Formula $S=\{n\in\mathbb{N}:1<n<2\}\neq\emptyset\land r\in s$ +\end_inset + +. + Sabemos que +\begin_inset Formula $1\in\mathbb{N}\backslash S$ +\end_inset + +. + Consideremos un número +\begin_inset Formula $m\in\mathbb{N}\backslash S$ +\end_inset + +. + Entonces +\begin_inset Formula $m\leq1\lor m\geq2$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{cc} +n\leq1\implies & n=1\implies n+1=2\in\mathbb{N}\backslash S\\ +n\geq2\implies & n+1\geq2+1=3,\,n+1\in\mathbb{N}\backslash S +\end{array}\implies\mathbb{N}\backslash S=\mathbb{N}\implies S=\emptyset +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostrar resto de propiedades cuando las estudiemos, si no como ejercicio. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n,m\in\mathbb{N},n+m\in\mathbb{N}\land n\cdot m\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n,m\in\mathbb{N},m>n\implies\exists k\in\mathbb{N}:m=n+k$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}:n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}:m\in\mathbb{Z},n\in\mathbb{N}\}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Método de inducción +\end_layout + +\begin_layout Standard +Método de demostración basado en definir un conjunto +\begin_inset Formula $S\subseteq\mathbb{N}$ +\end_inset + + que cumpla la propiedad +\begin_inset Formula $P(n)$ +\end_inset + + a demostrar en +\begin_inset Formula $\mathbb{N}$ +\end_inset + + y demostrar que es inductivo. + Como +\begin_inset Formula $\mathbb{N}$ +\end_inset + + es el conjunto inductivo más pequeño, tenemos +\begin_inset Formula $S=\mathbb{N}$ +\end_inset + +. + Para demostrar esto: +\end_layout + +\begin_layout Enumerate +Comprobamos que +\begin_inset Formula $P(1)$ +\end_inset + + es verdad. +\end_layout + +\begin_layout Enumerate +Demostramos que +\begin_inset Formula $P(n)\implies P(n+1)$ +\end_inset + +. + Para ello, demostramos +\begin_inset Formula $P(n+1)$ +\end_inset + + tomando como propiedad +\begin_inset Formula $P(n)$ +\end_inset + + (la +\series bold +hipótesis de inducción +\series default +). +\end_layout + +\begin_layout Standard +Dado un número natural +\begin_inset Formula $N$ +\end_inset + +, un conjunto +\begin_inset Formula $S\subseteq\{n\in\mathbb{N}:n\geq N\}\subseteq\mathbb{N}$ +\end_inset + + nos sirve para realizar demostraciones para los naturales a partir de un + número arbitrario. + Por último, la +\series bold +versión fuerte +\series default + del método de inducción nos permite definir +\begin_inset Formula $S$ +\end_inset + + tal que +\begin_inset Formula $1\in S$ +\end_inset + + y +\begin_inset Formula $1,2,\dots,n\in S\implies n+1\in S$ +\end_inset + +, y entonces +\begin_inset Formula $S=\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +De esta forma podemos demostrar el +\series bold +Teorema Fundamental de la Aritmética +\series default +, que nos dice que todo número entero +\begin_inset Formula $n\geq2$ +\end_inset + + es primo o producto de primos. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A=\{2\leq n\in\mathbb{N}:n\text{ cumple el Teorema Fund. de la Aritmética}\}$ +\end_inset + +. + Sabemos que +\begin_inset Formula $2\in A$ +\end_inset + +, y queremos demostrar que, si tenemos un +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $2,3,\dots,n\in A$ +\end_inset + +, entonces +\begin_inset Formula $n+1\in A$ +\end_inset + +. + Ahora, o bien +\begin_inset Formula $n+1$ +\end_inset + + es primo, en cuyo caso +\begin_inset Formula $n+1\in A$ +\end_inset + +, o no lo es, pero entonces +\begin_inset Formula $\exists p,q\in\mathbb{N}:1<p,q<n+1:p\cdot q=n+1$ +\end_inset + +, y como hemos supuesto que +\begin_inset Formula $2,3,\dots,n\in A$ +\end_inset + +, entonces +\begin_inset Formula $p,q\in A$ +\end_inset + +. + Como +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + son primos o producto de primos, +\begin_inset Formula $n+1$ +\end_inset + + también lo es, por lo que +\begin_inset Formula $n+1\in A$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Propiedad arquimediana +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{R}$ +\end_inset + + cumple la +\series bold +propiedad arquimediana: +\series default + +\begin_inset Formula $\forall0<y,x\in\mathbb{R},\exists n\in\mathbb{N}:x<ny$ +\end_inset + +. + +\series bold +Demostración: +\series default + De no ser así, +\begin_inset Formula $A:=\{ny:n\in\mathbb{N}\}$ +\end_inset + + estaría acotado superiormente por +\begin_inset Formula $x$ +\end_inset + +. + Sea +\begin_inset Formula $\alpha:=\sup A$ +\end_inset + +; tendríamos que +\begin_inset Formula $\forall n\in\mathbb{N},ny\leq\alpha$ +\end_inset + +. + Por otro lado, +\begin_inset Formula $\alpha-y$ +\end_inset + + no sería cota superior de +\begin_inset Formula $A$ +\end_inset + +, por lo que +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\alpha-y<n_{0}y$ +\end_inset + +. + Por tanto +\begin_inset Formula $\alpha<(n_{0}+1)y$ +\end_inset + +, lo que contradice el hecho de que +\begin_inset Formula $A$ +\end_inset + + esté acotado superiormente por +\begin_inset Formula $\alpha$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Por tanto +\begin_inset Formula $\mathbb{N}$ +\end_inset + + no está acotado superiormente, y +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + no está acotado superior ni inferiormente. +\end_layout + +\begin_layout Standard + +\series bold +Principio de la buena ordenación: +\series default + Todo subconjunto no vacío +\begin_inset Formula $A\subseteq\mathbb{N}$ +\end_inset + + tiene +\series bold +primer elemento +\series default +. + +\series bold +Demostración: +\series default + supongamos que +\begin_inset Formula $A$ +\end_inset + + no tuviera primer elemento y sea +\begin_inset Formula $B:=\mathbb{N}\backslash A$ +\end_inset + + el complementario de +\begin_inset Formula $A$ +\end_inset + +. + Entonces +\begin_inset Formula $1\notin A$ +\end_inset + +, pues de lo contrario tendría primer elemento; por tanto +\begin_inset Formula $1\in B$ +\end_inset + +. + Además, si +\begin_inset Formula $1,\dots,n\in B$ +\end_inset + + entonces +\begin_inset Formula $n+1\in B$ +\end_inset + +, pues de lo contrario tendríamos que +\begin_inset Formula $n+1\in A$ +\end_inset + + sería el primer elemento. + Por tanto +\begin_inset Formula $B=\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $A=\emptyset$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $x\in\mathbb{R}$ +\end_inset + +, llamamos +\series bold +parte entera +\series default + de +\begin_inset Formula $x$ +\end_inset + + o +\begin_inset Formula $[x]$ +\end_inset + + al único +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + que verifica +\begin_inset Formula $m\leq x<m+1$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Demostremos que existe. + Supongamos que +\begin_inset Formula $x\geq1$ +\end_inset + +. + Aplicando la propiedad arquimediana a +\begin_inset Formula $x$ +\end_inset + + y +\begin_inset Formula $1$ +\end_inset + +, se tiene que el conjunto +\begin_inset Formula $\{n\in\mathbb{N}:n>x\}\neq\emptyset$ +\end_inset + +, por lo que tiene un primer elemento +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +. + Si tomamos +\begin_inset Formula $m:=k-1$ +\end_inset + + obtenemos el resultado. + La unicidad se debe a que no existe ningún número natural entre +\begin_inset Formula $1$ +\end_inset + + y +\begin_inset Formula $2$ +\end_inset + + y, por inducción, tampoco entre +\begin_inset Formula $m$ +\end_inset + + y +\begin_inset Formula $m+1$ +\end_inset + + para ningún +\begin_inset Formula $m\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +De aquí podemos obtener que +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es +\series bold +denso +\series default + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, es decir, que si +\begin_inset Formula $x,y\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $x<y$ +\end_inset + +, entonces +\begin_inset Formula $\exists r\in\mathbb{Q}:x<r<y$ +\end_inset + +. + +\series bold +Demostración: +\series default + Por la propiedad arquimediana +\begin_inset Formula $\exists n\in\mathbb{N}:1<n(y-x)$ +\end_inset + +, por lo que +\begin_inset Formula $\frac{1}{n}<y-x$ +\end_inset + +. + Si +\begin_inset Formula $m:=[nx]$ +\end_inset + +, entonces +\begin_inset Formula $m\leq nx<m+1$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\frac{m}{n}\leq x<\frac{m+1}{n}=\frac{m}{n}+\frac{1}{n}\leq x+\frac{1}{n}<x+(y-x)=y +\] + +\end_inset + +Tomamos +\begin_inset Formula $r=\frac{m+1}{n}$ +\end_inset + + para obtener el resultado buscado. +\end_layout + +\begin_layout Subsection +Raíces cuadradas +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $x=y^{2}$ +\end_inset + +, entonces +\begin_inset Formula $y$ +\end_inset + + es una +\series bold +raíz cuadrada +\series default + de +\begin_inset Formula $x$ +\end_inset + +. + Entonces +\begin_inset Formula $-y$ +\end_inset + + también lo es, y +\begin_inset Formula $x$ +\end_inset + + no puede tener más raíces cuadradas. + Definimos +\begin_inset Formula +\[ +\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}:r^{2}<x\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +No existe ningún número racional cuyo cuadrado sea +\begin_inset Formula $2$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Supongamos +\begin_inset Formula $\exists p,q\in\mathbb{N}:\frac{p^{2}}{q^{2}}=2$ +\end_inset + +, siendo +\begin_inset Formula $\frac{p}{q}$ +\end_inset + + irreducible. + Tenemos que +\begin_inset Formula $p^{2}=2q^{2}$ +\end_inset + +, por lo que +\begin_inset Formula $p^{2}$ +\end_inset + + es par. + Por tanto +\begin_inset Formula $p$ +\end_inset + + debe ser par porque si fuera +\begin_inset Formula $p=2k+1$ +\end_inset + +, +\begin_inset Formula $p^{2}=4k^{2}+4k+1$ +\end_inset + + sería impar. + Sea pues +\begin_inset Formula $2p':=p$ +\end_inset + + (con +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + +). + Entonces +\begin_inset Formula $4(p')^{2}=2q^{2}$ +\end_inset + +, por lo que +\begin_inset Formula $2(p')^{2}=q^{2}$ +\end_inset + +. + Por tanto +\begin_inset Formula $\exists q'\in\mathbb{N}:q=2q'$ +\end_inset + +, lo que contradice el hecho de que +\begin_inset Formula $p/q$ +\end_inset + + sea irreducible. +\end_layout + +\begin_layout Plain Layout +La siguiente demostración usa la fórmula +\begin_inset Formula $(1+\varepsilon)^{n}<1+3^{n}\varepsilon\forall n\in\mathbb{N},0<\varepsilon<1$ +\end_inset + +, que demostraremos por inducción. + Para +\begin_inset Formula $n=1$ +\end_inset + + tenemos que +\begin_inset Formula $1+\varepsilon<1+3\varepsilon=1+3\varepsilon$ +\end_inset + +. + Ahora bien, si se cumple para cierto +\begin_inset Formula $n$ +\end_inset + +, podemos probar que se cumple para +\begin_inset Formula $n+1$ +\end_inset + +: +\begin_inset Formula +\[ +1+3^{n+1}\varepsilon=1+3\cdot3^{n}\varepsilon=3\cdot(1+3^{n}\varepsilon)-2>3\cdot(1+\varepsilon)^{n}-2\overset{?}{>}(1+\varepsilon)^{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +La última desigualdad se cumple siempre que +\begin_inset Formula $2\cdot(1+\varepsilon)^{n}>2$ +\end_inset + + y por tanto +\begin_inset Formula $(1+\varepsilon)^{n}>1$ +\end_inset + +, lo cual es verdad, demostrando la fórmula inicial. + Ahora usaremos esta fórmula para demostrar que si +\begin_inset Formula $r\in\mathbb{Q}$ +\end_inset + + con +\begin_inset Formula $r>0$ +\end_inset + + y +\begin_inset Formula $r^{2}<2$ +\end_inset + +, existe un +\begin_inset Formula $t\in\mathbb{Q}$ +\end_inset + + tal que +\begin_inset Formula $r<t$ +\end_inset + + y +\begin_inset Formula $r^{2}<t^{2}<2$ +\end_inset + +. + De igual modo, si +\begin_inset Formula $s\in\mathbb{Q}$ +\end_inset + + con +\begin_inset Formula $s>0$ +\end_inset + + y +\begin_inset Formula $s^{2}>2$ +\end_inset + +, existe +\begin_inset Formula $w\in\mathbb{Q}$ +\end_inset + + tal que +\begin_inset Formula $0<w<s$ +\end_inset + + y +\begin_inset Formula $s^{2}>w^{2}>2$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Para demostrar la primera afirmación debemos ver que es posible encontrar + +\begin_inset Formula $0<\varepsilon\in\mathbb{Q}$ +\end_inset + + tal que si +\begin_inset Formula $t:=r(1+\varepsilon)$ +\end_inset + + se tenga +\begin_inset Formula $t^{2}<2$ +\end_inset + +. + Pero usando la afirmación anterior tenemos que +\begin_inset Formula $t^{2}=r^{2}(1+\varepsilon)^{2}<r^{2}(1+9\varepsilon)$ +\end_inset + +, y queda encontrar un +\begin_inset Formula $\varepsilon$ +\end_inset + + tal que +\begin_inset Formula $r^{2}(1+9\varepsilon)<2$ +\end_inset + +, lo que se consigue con +\begin_inset Formula $0<\varepsilon<\frac{1}{9}\left(\frac{2}{r^{2}}-1\right)$ +\end_inset + +. + Sabemos que este número existe porque +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es un cuerpo denso. + La demostración de la segunda afirmación es análoga, pero tomando +\begin_inset Formula $w:=\frac{s}{1+\varepsilon}$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Ahora veremos que esto también se cumple con si +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $s$ +\end_inset + + no son necesariamente racionales. + Razonamos igual que antes, pero como no sabemos si +\begin_inset Formula $r$ +\end_inset + + es racional, tampoco sabemos si lo es +\begin_inset Formula $t$ +\end_inset + +, pero sabemos que, como +\begin_inset Formula $r<t$ +\end_inset + +, entonces +\begin_inset Formula $\exists\tau\in\mathbb{Q}:r<\tau<t$ +\end_inset + +. + Por tanto +\begin_inset Formula $r^{2}<\tau^{2}<t^{2}<2$ +\end_inset + +, que es lo que buscamos. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}:r^{2}<2\})$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}:r^{2}<2\}$ +\end_inset + +. + +\begin_inset Formula $1\in A$ +\end_inset + +, por lo que +\begin_inset Formula $A\neq\emptyset$ +\end_inset + +, y está acotado superiormente por +\begin_inset Formula $2$ +\end_inset + +. + Por tanto +\begin_inset Formula $\exists\alpha:=\sup A$ +\end_inset + +. + Ahora debemos demostrar que +\begin_inset Formula $\alpha^{2}=2$ +\end_inset + +. + Si +\begin_inset Formula $\alpha^{2}<2$ +\end_inset + +, tendríamos que +\begin_inset Formula $\exists t\in\mathbb{Q}:\alpha<t\land\alpha^{2}<t^{2}<2$ +\end_inset + +, pero +\begin_inset Formula $t\in A\#$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $\alpha^{2}>2$ +\end_inset + +, +\begin_inset Formula $\exists s\in\mathbb{Q}:\alpha>s\land s^{2}>2$ +\end_inset + +, por lo que +\begin_inset Formula $2<s^{2}<\alpha^{2}$ +\end_inset + + y, como +\begin_inset Formula $s$ +\end_inset + + es cota superior de +\begin_inset Formula $A$ +\end_inset + + con +\begin_inset Formula $s<\alpha$ +\end_inset + +, entonces +\begin_inset Formula $\alpha$ +\end_inset + + no es el supremo +\begin_inset Formula $\#$ +\end_inset + +. + Por tanto +\begin_inset Formula $\alpha^{2}=2$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +números irracionales +\series default + a los elementos de +\begin_inset Formula $\mathbb{R}\backslash\text{\mathbb{Q}}$ +\end_inset + +. + Se tiene que si +\begin_inset Formula $x,y\in\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $x<y$ +\end_inset + +, entonces +\begin_inset Formula $\exists z\in\mathbb{R}\backslash\mathbb{Q}:x<z<y$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $w\in\mathbb{Q}:x<w<y$ +\end_inset + +. + Por la propiedad arquimediana, +\begin_inset Formula $\exists n:\frac{\sqrt{2}}{n}<y-w$ +\end_inset + +. + Entonces +\begin_inset Formula $z:=w+\frac{\sqrt{2}}{n}$ +\end_inset + +. + También podemos probar que +\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r:r\in\mathbb{Q},r<x\}$ +\end_inset + +, pues si +\begin_inset Formula $\alpha>x$ +\end_inset + +, +\begin_inset Formula $x$ +\end_inset + + sería una cota superior menor +\begin_inset Formula $\#$ +\end_inset + +, y si fuera menor, entonces +\begin_inset Formula $\exists r\in\mathbb{Q}:\alpha<r<x\#$ +\end_inset + +. + Por esto a +\begin_inset Formula $\mathbb{R}$ +\end_inset + + se le llama tradicionalmente +\begin_inset Quotes cld +\end_inset + +el continuo +\begin_inset Quotes crd +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Valor absoluto +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +|x|:=\begin{cases} +x & \text{si }x\geq0\\ +-x & \text{si }x<0 +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|x|=|-x|\geq0$ +\end_inset + +; +\begin_inset Formula $x\neq0\implies|x|>0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|x|=\max\{x,-x\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|xy|=|x||y|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left|\frac{1}{x}\right|=\frac{1}{|x|}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|x|\leq a\iff-a\leq x\leq a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +|x|=\max\{x,-x\}\leq a\equiv x\leq a\land-x\leq a\equiv-a\leq x\leq a +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad triangular: +\series default + +\begin_inset Formula $|x+y|\leq|x|+|y|$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\begin{array}{c} +-|x|\leq x\leq|x|\\ +-|y|\leq y\leq|y| +\end{array}\implies-(|x|+|y|)\leq x+y\leq(|x|+|y|)\overset{(5)}{\implies}|x+y|\leq|x|+|y| +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left||x|-|y|\right|\leq|x-y|$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\begin{array}{cc} +z:=y-x: & |x+z|\leq|x|+|z|\implies|x+y-x|=|y|\leq|x|+|y-x|\implies\\ + & \implies|y|-|x|\leq|y-x|\\ +z':=x-y: & |y+z'|\leq|y|+|z'|\implies|y+x-y|=|x|\leq|y|+|x-y|\implies\\ + & \implies|x|-|y|\leq|x-y| +\end{array} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left|\sum_{k=1}^{n}x_{k}\right|\leq\sum_{k=1}^{n}|x_{k}|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Se obtiene por inducción sobre la desigualdad triangular. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Distancia +\series default + de +\begin_inset Formula $x$ +\end_inset + + a +\begin_inset Formula $y$ +\end_inset + +: +\begin_inset Formula $d(x,y):=|x-y|$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,y)=0\iff x=y$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,y)=d(y,x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,z)\leq d(x,y)+d(y,z)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $x\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $x>0$ +\end_inset + + y sea +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall r\in\mathbb{Q},r>0,r^{p}<x,\exists t\in\mathbb{Q}:(r<t\land r^{p}<t^{p}<x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall s\in\mathbb{Q},s>0,s^{p}>x,\exists w\in\mathbb{Q}:(0<w<s\land s^{p}>w^{p}>x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists!\alpha\in\mathbb{R},\alpha>0:\alpha^{p}=x$ +\end_inset + +; +\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}:r^{p}<x\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, la +\series bold +raíz +\begin_inset Formula $p$ +\end_inset + +-ésima +\series default + de +\begin_inset Formula $x$ +\end_inset + + se define como el único número real positivo +\begin_inset Formula $\alpha$ +\end_inset + + tal que +\begin_inset Formula $\alpha^{p}=x$ +\end_inset + +. + Lo escribimos como +\begin_inset Formula +\[ +x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r:r\in\mathbb{Q},r^{p}<x\} +\] + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/fuvr1/n2.lyx b/fuvr1/n2.lyx new file mode 100644 index 0000000..35de49d --- /dev/null +++ b/fuvr1/n2.lyx @@ -0,0 +1,5306 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures false +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Resultados importantes: +\end_layout + +\begin_layout Enumerate + +\series bold +Ecuación ciclotómica: +\series default + +\begin_inset Formula $(x-y)^{n}=(x-y)(x^{n-1}+x^{n-2}y+\dots+xy^{n-2}+y^{n-1})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad de Bernoulli: +\series default + +\begin_inset Formula $\forall x>-1,x\neq0,n\in\mathbb{N},(1+x)^{n}>1+nx$ +\end_inset + +. +\end_layout + +\begin_layout Section +Convergencia +\end_layout + +\begin_layout Standard +Una +\series bold +sucesión +\series default + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + o +\begin_inset Formula $\mathbb{C}$ +\end_inset + + ( +\begin_inset Formula $K$ +\end_inset + +) es una aplicación +\begin_inset Formula $\phi:\mathbb{N}\rightarrow K$ +\end_inset + + que denotamos como +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}$ +\end_inset + + o +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, con elementos +\begin_inset Formula $a_{n}:=\phi(n)$ +\end_inset + +. + +\begin_inset Formula $a_{n}$ +\end_inset + + es el +\series bold +término general +\series default + de la sucesión, y puede venir dado, por ejemplo, mediante una fórmula explícita + o por recurrencia ( +\series bold +sucesión recurrente +\series default +), como es el caso de la +\series bold +sucesión de Fibonacci +\series default + ( +\begin_inset Formula $a_{1}=a_{2}=1$ +\end_inset + +; +\begin_inset Formula $a_{n}=a_{n-1}+a_{n-2}\forall n\geq3$ +\end_inset + +). +\end_layout + +\begin_layout Standard +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + tiene límite +\begin_inset Formula $a\in K$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{\varepsilon}\in\mathbb{N}:\forall n\in\mathbb{N}(n\geq n_{\varepsilon}\implies|a_{n}-a|<\varepsilon)$ +\end_inset + +. + Escribimos +\begin_inset Formula +\[ +a=\lim_{n\rightarrow\infty}a_{n}=\lim_{n}a_{n} +\] + +\end_inset + +y decimos que +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es convergente con límite +\begin_inset Formula $a$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a=a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\forall\varepsilon>0,|a_{n}-a|=|a-a|=0<\varepsilon +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}\frac{1}{n}=0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, se trata de demostrar que +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-0|=\frac{1}{n}<\varepsilon$ +\end_inset + +, pero como +\begin_inset Formula $\frac{1}{n}<\frac{1}{n_{0}}$ +\end_inset + +, entonces basta encontrar un +\begin_inset Formula $n_{0}$ +\end_inset + + tal que +\begin_inset Formula $\frac{1}{n_{0}}<\varepsilon$ +\end_inset + +, es decir, +\begin_inset Formula $1<n_{0}\varepsilon$ +\end_inset + +, que existe por la propiedad arquimediana. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}|a_{n}|=|\lim_{n}a_{n}|$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a-a_{n}|<\varepsilon$ +\end_inset + +, pero entonces +\begin_inset Formula +\[ +\left||a|-|a_{n}|\right|\leq|a-a_{n}|<\varepsilon +\] + +\end_inset + +por lo que +\begin_inset Formula $|a|=\lim_{n}|a_{n}|$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}\sqrt{a_{n}}=\sqrt{\lim_{n}a_{n}}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a-a_{n}|<\varepsilon$ +\end_inset + +, pero +\begin_inset Formula +\[ +\left|\sqrt{a}-\sqrt{a_{n}}\right|=\frac{|a-a_{n}|}{\sqrt{a}+\sqrt{a_{n}}}\leq\frac{|a-a_{n}|}{\sqrt{a}}<\frac{\sqrt{a}\varepsilon}{\sqrt{a}}=\varepsilon +\] + +\end_inset + +Nótese que el caso +\begin_inset Formula $a=0$ +\end_inset + + debe ser tratado de forma especial. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $a\leq b$ +\end_inset + +, llamamos +\series bold +intervalo cerrado +\series default + de extremos +\begin_inset Formula $a,b$ +\end_inset + + al conjunto +\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$ +\end_inset + +, +\series bold +intervalo abierto +\series default + a +\begin_inset Formula $(a,b):=\{x\in\mathbb{R}:a<x<b\}$ +\end_inset + + e +\series bold +intervalos semiabiertos +\series default + por la derecha e izquierda, respectivamente, a +\begin_inset Formula $[a,b):=\{x\in\mathbb{R}:a\leq x<b\}$ +\end_inset + + y +\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}:a<x\leq b\}$ +\end_inset + +. + La +\series bold +longitud +\series default + del intervalo es +\begin_inset Formula $b-a$ +\end_inset + +. + Llamamos +\series bold +bola cerrada +\series default + de centro +\begin_inset Formula $x_{0}$ +\end_inset + + y radio +\begin_inset Formula $r>0$ +\end_inset + + al conjunto +\begin_inset Formula $B[x_{0},r]:=\{x\in K:|x-x_{0}|\leq r\}$ +\end_inset + +, y +\series bold +bola abierta +\series default + a +\begin_inset Formula $B(x_{0},r):=\{x\in K:|x-x_{0}|<r\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El límite de una sucesión convergente es único. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Supongamos por reducción al absurdo que +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + tuviera límites +\begin_inset Formula $a\neq b$ +\end_inset + +. + Entonces, dado +\begin_inset Formula $\varepsilon=\frac{|a-b|}{4}>0$ +\end_inset + +, existen +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|a_{n}-a|<\varepsilon$ +\end_inset + + si +\begin_inset Formula $n>n_{1}$ +\end_inset + + y +\begin_inset Formula $|a_{n}-b|<\varepsilon$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + +. + Sea +\begin_inset Formula $n_{0}:=\max\{n_{1},n_{2}\}$ +\end_inset + +, entonces +\begin_inset Formula $|a_{n}-a|,|a_{n}-b|<\varepsilon$ +\end_inset + + si +\begin_inset Formula $n>n_{0},$ +\end_inset + + por lo que +\begin_inset Formula +\[ +|a-b|=|a-a_{n}+a_{n}-b|\leq|a-a_{n}|+|a_{n}-b|<\varepsilon+\varepsilon=\frac{|a-b|}{2}\implies1<\frac{1}{2}\# +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda sucesión convergente es acotada, es decir +\begin_inset Formula $\{a_{n}:n\in\mathbb{N}\}$ +\end_inset + + es un conjunto acotado. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon=1$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a|<1$ +\end_inset + +, por lo que +\begin_inset Formula $|a_{n}|=|a_{n}-a+a|\leq|a_{n}-a|+|a|<1+|a|$ +\end_inset + +. + Llamando +\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a|\}$ +\end_inset + +, se tiene que +\begin_inset Formula $\forall n\in\mathbb{N},|a_{n}|\leq M$ +\end_inset + +, por lo que +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es acotada. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + son convergentes: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a_{n}+b_{n}=\lim_{n}a_{n}+\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $b=\lim_{n}b_{n}$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existen +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|a-a_{n}|<\frac{\varepsilon}{2}$ +\end_inset + + si +\begin_inset Formula $n>n_{1}$ +\end_inset + + y +\begin_inset Formula $|b-b_{n}|<\frac{\varepsilon}{2}$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + +. + Así, dado +\begin_inset Formula $n_{0}=\max\{n_{1},n_{2}\}$ +\end_inset + +, para todo +\begin_inset Formula $n>n_{0}$ +\end_inset + +, +\begin_inset Formula +\[ +|(a+b)-(a_{n}+b_{n})|\leq|a-a_{n}|+|b-b_{n}|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}(a_{n}b_{n})=\lim_{n}a_{n}\cdot\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tenemos que +\begin_inset Formula $\exists\alpha>0:\forall n\in\mathbb{N},|a_{n}|\leq\alpha$ +\end_inset + +, luego +\begin_inset Formula +\[ +|ab-a_{n}b_{n}|=|ab-a_{n}b+a_{n}b-a_{n}b_{n}|\leq|a-a_{n}||b|+|a_{n}||b-b_{n}|\leq|a-a_{n}||b|+\alpha|b-b_{n}| +\] + +\end_inset + +Pero entonces, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existen +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|a-a_{n}|<\frac{\varepsilon}{2(|b|+1)}$ +\end_inset + + si +\begin_inset Formula $n>n_{1}$ +\end_inset + + y +\begin_inset Formula $|b-b_{n}|<\frac{\varepsilon}{2a}$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + +, si +\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2}\}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +|ab-a_{n}b_{n}|\leq|a-a_{n}||b|+\alpha|b-b_{n}|<\frac{\varepsilon}{2(|b|+1)}|b|+\alpha\frac{\varepsilon}{2\alpha}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $b_{n}\neq0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}b_{n}\neq0$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=\frac{\lim_{n}a_{n}}{\lim_{n}b_{n}}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +Si tomamos +\begin_inset Formula $\varepsilon=\frac{|b|}{2}$ +\end_inset + +, existe +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\alpha:=\frac{|b|}{2}<|b_{n}|$ +\end_inset + + para +\begin_inset Formula $n>n_{1}$ +\end_inset + +. + Pero entonces +\begin_inset Formula +\[ +\left|\frac{a}{b}-\frac{a_{n}}{b_{n}}\right|=\frac{|ab_{n}-a_{n}b|}{|b||b_{n}|}=\frac{|ab_{n}-ab+ab-a_{n}b|}{|b||b_{n}|}\leq\frac{|a||b_{n}-b|+|a-a_{n}||b|}{|b|\alpha} +\] + +\end_inset + +Ahora, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existen +\begin_inset Formula $n_{2},n_{3}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|b-b_{n}|<\frac{\varepsilon}{2(|a|+1)}|b|\alpha$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + + y +\begin_inset Formula $|a-a_{n}|<\frac{\varepsilon}{2|b|}|b|\alpha$ +\end_inset + + si +\begin_inset Formula $n>n_{3}$ +\end_inset + +. + Ahora, si +\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2},n_{\text{3}}\}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\left|\frac{a}{b}-\frac{a_{n}}{b_{n}}\right|\leq\frac{|a||b_{n}-b|+|a-a_{n}||b|}{|b|\alpha}<|a|\frac{\varepsilon}{2(|a|+1)}+|b|\frac{\varepsilon}{2|b|}<\varepsilon +\] + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +Aunque aquí hemos usado la definición de límite con valores de +\begin_inset Formula $\varepsilon$ +\end_inset + + complicados, esto es innecesario, pues si suponemos +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a|<M\varepsilon$ +\end_inset + + para un +\begin_inset Formula $M$ +\end_inset + + fijo (independiente de +\begin_inset Formula $n$ +\end_inset + +), entonces podemos aplicar lo demostrado para +\begin_inset Formula $\varepsilon^{\prime}=\frac{\varepsilon}{M}$ +\end_inset + +. + Entonces +\begin_inset Formula $\exists n_{0}^{\prime}\in\mathbb{N}:\forall n>n_{0}^{\prime},|a_{n}-a|<M\varepsilon^{\prime}=\varepsilon$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a_{n}\leq b_{n}\forall n\implies\lim_{n}a_{n}\leq\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $a:=\lim_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $b:=\lim_{n}b_{n}$ +\end_inset + +, y supongamos por reducción al absurdo que +\begin_inset Formula $a>b$ +\end_inset + +. + Tomando +\begin_inset Formula $\varepsilon:=\frac{a-b}{4}$ +\end_inset + +, debería existir +\begin_inset Formula $n_{0}$ +\end_inset + + tal que +\begin_inset Formula $|a-a_{n}|<\varepsilon$ +\end_inset + + y +\begin_inset Formula $|b-b_{n}|<\varepsilon$ +\end_inset + + para todo +\begin_inset Formula $n>n_{0}$ +\end_inset + +. + Por tanto, en tal caso, +\begin_inset Formula +\[ +b_{n}=b_{n}-b+b\leq|b_{n}-b|+b<\varepsilon+b<a-\varepsilon<a_{n}\# +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a_{n}<\lim_{n}b_{n}\implies\exists n_{0}\in\mathbb{N}:\forall n>n_{0},a_{n}<b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tomemos un +\begin_inset Formula $\varepsilon$ +\end_inset + + tal que +\begin_inset Formula $a+\varepsilon<b-\varepsilon$ +\end_inset + +. + Entonces existe un +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $a_{n}\in(a-\varepsilon,a+\varepsilon)$ +\end_inset + + y +\begin_inset Formula $b_{n}\in(b-\varepsilon,b+\varepsilon)$ +\end_inset + +, por lo que +\begin_inset Formula $a_{n}<b_{n}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Regla del sandwich: +\series default + +\begin_inset Formula $a_{n}\leq c_{n}\leq b_{n}\land\lim_{n}a_{n}=\lim_{n}b_{n}=\alpha\implies\lim_{n}c_{n}=\alpha$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $a_{n},b_{n}\in B(\alpha,\varepsilon)$ +\end_inset + +, por lo que +\begin_inset Formula $c_{n}\in B(\alpha,\varepsilon)$ +\end_inset + +, pero entonces +\begin_inset Formula $|\alpha-c_{n}|<\varepsilon$ +\end_inset + + para +\begin_inset Formula $n>n_{0}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Sucesiones monótonas acotadas +\end_layout + +\begin_layout Standard +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es +\series bold +creciente +\series default + o +\series bold +monótona creciente +\series default + si +\begin_inset Formula $a_{n}\leq a_{n+1}\forall n\in\mathbb{N}$ +\end_inset + +, y es +\series bold +decreciente +\series default + o +\series bold +monótona decreciente +\series default + si +\begin_inset Formula $a_{n}\geq a_{n+1}\forall n\in\mathbb{N}$ +\end_inset + +. + Decimos que es +\series bold +monótona +\series default + si es creciente o decreciente. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es creciente y acotada superiormente entonces converge a +\begin_inset Formula $\sup\{a_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +, y si es decreciente y acotada inferiormente, converge a +\begin_inset Formula $\inf\{a_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es creciente y acotada superiormente, existe +\begin_inset Formula $\alpha:=\sup\{a_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +. + Entonces, fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\alpha-\varepsilon<a_{n_{0}}$ +\end_inset + +, y al ser creciente, +\begin_inset Formula $\alpha-\varepsilon<a_{n}$ +\end_inset + + para cada +\begin_inset Formula $n>n_{0}$ +\end_inset + +. + El segundo caso es análogo. +\end_layout + +\begin_layout Standard +A continuación definimos el número +\begin_inset Formula $e$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ +\end_inset + + es creciente y acotada. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b_{n}=\left(1+\frac{1}{n}\right)^{n+1}$ +\end_inset + + es decreciente y acotada. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e:=\lim_{n}a_{n}=\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +De la desigualdad de Bernoulli, para +\begin_inset Formula $n>1$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{a_{n}}{b_{n-1}}=\left(\frac{n^{2}-1}{n^{2}}\right)^{n}=\left(1-\frac{1}{n^{2}}\right)^{n}>1-n\frac{1}{n^{2}}=\frac{n-1}{n}=\left(1+\frac{1}{n-1}\right)^{-1} +\] + +\end_inset + +luego +\begin_inset Formula $a_{n}>b_{n-1}\left(1+\frac{1}{n-1}\right)^{-1}=\left(1+\frac{1}{n-1}\right)^{n-1}=a_{n-1}$ +\end_inset + + y +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es creciente. + Análogamente, +\begin_inset Formula +\[ +\frac{b_{n-1}}{a_{n}}=\left(\frac{n^{2}}{n^{2}-1}\right)^{n}=\left(1+\frac{1}{n^{2}-1}\right)^{n}>\left(1+\frac{1}{n^{2}}\right)^{n}>1+n\frac{1}{n^{2}}=1+\frac{1}{n} +\] + +\end_inset + +luego +\begin_inset Formula $b_{n-1}>a_{n}(1+\frac{1}{n})=\left(1+\frac{1}{n}\right)^{n+1}=b_{n}$ +\end_inset + + y +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + es decreciente. + Además, +\begin_inset Formula $2=a_{1}<a_{n}<b_{n}<b_{1}=4$ +\end_inset + + para todo +\begin_inset Formula $n$ +\end_inset + +, por lo que ambas son monótonas acotadas y por tanto convergen. + Pero como +\begin_inset Formula $b_{n}=(1+\frac{1}{n})a_{n}$ +\end_inset + + y +\begin_inset Formula $\lim_{n}(1+\frac{1}{n})=1$ +\end_inset + +, se concluye que convergen al mismo límite, que llamamos +\begin_inset Formula $e$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $S_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}S_{n}=e$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Desarrollamos según el binomio de Newton: +\begin_inset Formula +\[ +a_{n}=\left(1+\frac{1}{n}\right)^{n}=\binom{n}{0}+\frac{1}{n}\binom{n}{1}+\frac{1}{n^{2}}\binom{n}{2}+\dots+\frac{1}{n^{n-1}}\binom{n}{n-1}+\frac{1}{n^{n}}\binom{n}{n} +\] + +\end_inset + +Ahora, para +\begin_inset Formula $1\leq k\leq n$ +\end_inset + +: +\begin_inset Formula +\[ +\frac{1}{n^{k}}\binom{n}{k}=\frac{1}{k!}\frac{n(n-1)\cdots(n-k+1)}{n^{k}}=\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{k-1}{n}\right) +\] + +\end_inset + +Entonces +\begin_inset Formula +\[ +a_{n}=1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{n-1}{n}\right)\leq +\] + +\end_inset + + +\begin_inset Formula +\[ +\leq\sum_{k=0}^{n}\frac{1}{k!}=S_{n}<1+1+\frac{1}{2}+\frac{1}{2^{2}}+\dots+\frac{1}{2^{n-1}}<3 +\] + +\end_inset + + +\begin_inset Formula $S_{n}$ +\end_inset + + es creciente y acotada superiormente, luego converge. + Además, para cada +\begin_inset Formula $m$ +\end_inset + + fijo, si +\begin_inset Formula $n>m$ +\end_inset + +, +\begin_inset Formula +\[ +a_{n}=1+\dots+\frac{1}{m!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{m-1}{n}\right)+\dots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{n-1}{n}\right)> +\] + +\end_inset + + +\begin_inset Formula +\[ +>1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\dots+\frac{1}{m!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{m-1}{n}\right) +\] + +\end_inset + +Tomando límites en +\begin_inset Formula $n$ +\end_inset + +, se obtiene que +\begin_inset Formula $e=\lim_{n}a_{n}\geq S_{m}$ +\end_inset + + para todo +\begin_inset Formula $m$ +\end_inset + +. + Por tanto +\begin_inset Formula $a_{n}\leq S_{n}\leq e$ +\end_inset + + y por tanto +\begin_inset Formula $\lim_{n}S_{n}=e$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e$ +\end_inset + + es irracional. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Observamos que +\begin_inset Formula +\[ +e-S_{n}=\lim_{p}\sum_{k=n+1}^{p}\frac{1}{k!} +\] + +\end_inset + +Ahora bien, +\begin_inset Formula +\[ +\sum_{k=n+1}^{p}\frac{1}{k!}=\frac{1}{n!}\sum_{k=1}^{q}\frac{1}{(n+1)\cdots(n+k)}<\frac{1}{n!}\sum_{k=1}^{q}\frac{1}{(n+1)^{k}} +\] + +\end_inset + +Y usando la fórmula de la suma de una progresión geométrica, +\begin_inset Formula +\[ +e-S_{n}=\lim_{q\rightarrow\infty}\sum_{k=n+1}^{n+q}\frac{1}{k!}\leq\frac{1}{n!}\lim_{q}\sum_{k=1}^{q}\frac{1}{(n+1)^{k}}=\frac{1}{n!}\frac{\frac{1}{n+1}}{1-\frac{1}{n+1}}=\frac{1}{n!}\frac{1}{n} +\] + +\end_inset + +Si fuese +\begin_inset Formula $e=\frac{p}{q}$ +\end_inset + +, tomando +\begin_inset Formula $n=q$ +\end_inset + + se tendría que +\begin_inset Formula +\[ +0<\frac{p}{q}-S_{q}<\frac{1}{q!q}\implies0<q!\frac{p}{q}-q!S_{q}<\frac{1}{q} +\] + +\end_inset + +Pero como entonces +\begin_inset Formula $q!\frac{p}{q},q!S_{q}\in\mathbb{N}$ +\end_inset + +, se tendría que +\begin_inset Formula $\exists n\in\mathbb{N}:n<1$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de Bolzano-Weierstrass +\end_layout + +\begin_layout Standard +El +\series bold +principio de encaje de Cantor +\series default + dice que si +\begin_inset Formula $(I_{n})_{n}$ +\end_inset + + es una sucesión de intervalos cerrados de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula $I_{n+1}\subseteq I_{n}$ +\end_inset + + y el límite de la longitud de +\begin_inset Formula $I_{n}$ +\end_inset + + es 0, entonces +\begin_inset Formula $\exists!a\in\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $I_{n}:=[a_{n},b_{n}]$ +\end_inset + +. + Entonces para cualquier +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $b_{k}$ +\end_inset + + es cota superior de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, pues para todo +\begin_inset Formula $n\geq k$ +\end_inset + +, +\begin_inset Formula $a_{1}\leq\dots\leq a_{n}\leq b_{n}\leq b_{k}$ +\end_inset + +. + Por tanto +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge. + Si +\begin_inset Formula $a:=\lim_{n}a_{n}$ +\end_inset + + entonces +\begin_inset Formula $a\leq b_{k}$ +\end_inset + + para todo +\begin_inset Formula $k$ +\end_inset + +, y como +\begin_inset Formula $a_{k}\leq a\leq b_{k}$ +\end_inset + +, entonces +\begin_inset Formula $a\in\bigcap_{n\in\mathbb{N}}I_{n}\neq\emptyset$ +\end_inset + +. + Por otra parte, si suponemos que +\begin_inset Formula $\exists\alpha<\beta:\alpha,\beta\in\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +, entonces +\begin_inset Formula $[\alpha,\beta]\subseteq\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +. + Pero entonces la longitud de todos los +\begin_inset Formula $I_{n}$ +\end_inset + + sería mayor o igual a +\begin_inset Formula $\beta-\alpha>0\#$ +\end_inset + +, de donde se desprende la unicidad. +\end_layout + +\begin_layout Standard +Dadas las sucesiones +\begin_inset Formula $\phi:\mathbb{N}\rightarrow K$ +\end_inset + + y +\begin_inset Formula $\tau:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + estrictamente creciente, la sucesión +\begin_inset Formula $\phi\circ\tau:\mathbb{N}\rightarrow K$ +\end_inset + + es una +\series bold +subsucesión +\series default + de +\begin_inset Formula $\phi$ +\end_inset + +. + Si +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}:=(\phi(n))_{n\in\mathbb{N}}$ +\end_inset + +, entonces +\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}:=(\phi\circ\tau(k))_{k\in\mathbb{N}}$ +\end_inset + +. + Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es convergente, cualquier subsucesión suya converge al mismo límite. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $a=\lim_{n}(a_{n})_{n}$ +\end_inset + +. + Entonces, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, +\begin_inset Formula $\exists p\in\mathbb{N}:\forall n>p,|a_{n}-a|<\varepsilon$ +\end_inset + +. + Entonces, si +\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}$ +\end_inset + + es una subsucesión de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, necesariamente +\begin_inset Formula $k\leq n_{k}$ +\end_inset + + para cualquier +\begin_inset Formula $k$ +\end_inset + +, por lo que si +\begin_inset Formula $k>p$ +\end_inset + + entonces +\begin_inset Formula $|a_{n_{k}}-a|<\varepsilon$ +\end_inset + + y +\begin_inset Formula $\lim_{k}a_{n_{k}}=a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Bolzano-Weierstrass +\series default + afirma que cualquier sucesión acotada en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + posee una subsucesión convergente. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + acotada y +\begin_inset Formula $c_{0},d_{0}\in\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula $c_{0}\leq a_{n}\leq d_{0}\forall n$ +\end_inset + +. + Sea entonces +\begin_inset Formula $I_{0}:=[c_{0},d_{0}]$ +\end_inset + + y +\begin_inset Formula $m_{0}:=\frac{c_{0}+d_{0}}{2}$ +\end_inset + +. + Entonces uno de los conjuntos +\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[c_{0},m_{0}]\}$ +\end_inset + + o +\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[m_{0},d_{0}]\}$ +\end_inset + + es infinito. + Llamamos a este +\begin_inset Formula $I_{1}:=[c_{1},d_{1}]$ +\end_inset + + y tomamos +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $a_{n_{1}}\in I_{1}$ +\end_inset + +. + Entonces dividimos +\begin_inset Formula $I_{1}$ +\end_inset + + por +\begin_inset Formula $m_{1}:=\frac{c_{1}+d_{1}}{2}$ +\end_inset + + y obtenemos, del mismo modo que antes, +\begin_inset Formula $I_{2}=[c_{2},d_{2}]$ +\end_inset + +. + Como es infinito podemos elegir +\begin_inset Formula $n_{2}>n_{1}$ +\end_inset + + tal que +\begin_inset Formula $a_{n_{2}}\in I_{2}$ +\end_inset + +. + Por inducción obtenemos una serie de intervalos +\begin_inset Formula $(I_{k})_{k}$ +\end_inset + + y una subsucesión +\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}$ +\end_inset + + tales que +\begin_inset Formula $I_{k+1}\subsetneq I_{k}$ +\end_inset + + con +\begin_inset Formula $L(I_{k})=\frac{1}{2^{k-1}}L(I_{0})=0$ +\end_inset + +, y +\begin_inset Formula $a_{n_{k}}\in I_{k}$ +\end_inset + +. + Por el principio de encaje de Cantor, se tiene que +\begin_inset Formula $\exists!z\in\bigcap_{k}I_{k}$ +\end_inset + + y por tanto +\begin_inset Formula $z=\lim_{k}a_{n_{k}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí obtenemos que si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es una sucesión acotada y todas sus subsucesiones convergen a +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $a$ +\end_inset + + no fuera el límite de la sucesión, existiría +\begin_inset Formula $\varepsilon_{0}$ +\end_inset + + tal que +\begin_inset Formula $\left|B(a,\varepsilon_{0})^{\complement}\cap\{a_{n}\}_{n\in\mathbb{N}}\right|=\infty$ +\end_inset + +. + Por tanto existiría una subsucesión +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + en +\begin_inset Formula $B(a,\varepsilon_{0})^{\complement}$ +\end_inset + +. + Como esta es acotada, entonces por el teorema de Bolzano-Weierstrass, poseería + una subsucesión +\begin_inset Formula $(b_{n_{k}})_{k}$ +\end_inset + +—que también lo sería de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +—convergente a +\begin_inset Formula $b$ +\end_inset + +. + Pero entonces +\begin_inset Formula $|b_{n}-a|\geq\varepsilon_{0}$ +\end_inset + + para todo +\begin_inset Formula $n$ +\end_inset + + contradiciendo la hipótesis de que cualquier subsucesión que converja tenga + límite +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Sucesiones de Cauchy: completitud +\end_layout + +\begin_layout Standard +Una sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es +\series bold +de Cauchy +\series default + si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall n,m\in\mathbb{N}(n,m\geq n_{0}\implies|a_{m}-a_{n}|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de completitud de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +: +\series default + +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es convergente si y sólo si es de Cauchy. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $a:=\lim_{n}a_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a|<\frac{\varepsilon}{2}$ +\end_inset + +. + Por tanto, si +\begin_inset Formula $n,m>n_{0}$ +\end_inset + +, entonces +\begin_inset Formula $|a_{m}-a_{n}|=|a_{m}-a+a-a_{n}|\leq|a_{m}-a|+|a-a_{n}|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Primero probamos que una sucesión de Cauchy es acotada: Dado +\begin_inset Formula $\varepsilon=1$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a_{n_{0}}|<\varepsilon=1$ +\end_inset + +, de donde +\begin_inset Formula +\[ +|a_{n}|=|a_{n}-a_{n_{0}}+a_{n_{0}}|\leq|a_{n}-a_{n_{0}}|+|a_{n_{0}}|<1+|a_{n_{0}}| +\] + +\end_inset + +y si llamamos +\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a_{n_{0}}|\}$ +\end_inset + + entonces +\begin_inset Formula $a_{1}\leq|a_{n}|\leq M\forall n$ +\end_inset + +. + Ahora, aplicando el teorema de Bolzano-Weierstrass, sabemos que existe + una subsucesión +\begin_inset Formula $(a_{n_{k}})_{k}$ +\end_inset + + convergente, digamos, a +\begin_inset Formula $b$ +\end_inset + +. + Como +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es de Cauchy, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n,m>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $|a_{n}-a_{m}|<\frac{\varepsilon}{2}$ +\end_inset + +. + Por otra parte, como +\begin_inset Formula $\lim_{k}a_{n_{k}}=b$ +\end_inset + +, existe +\begin_inset Formula $k_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $k>k_{0}$ +\end_inset + + entonces +\begin_inset Formula $|a_{n_{k}}-b|<\frac{\varepsilon}{2}$ +\end_inset + +. + Ahora, si +\begin_inset Formula $p>\max\{n_{0},k_{0}\}$ +\end_inset + + y +\begin_inset Formula $n>p$ +\end_inset + +, entonces +\begin_inset Formula +\[ +|a_{n}-b|=|a_{n}-a_{n_{p}}+a_{n_{p}}-b|\leq|a_{n}-a_{n_{p}}|+|a_{n_{p}}-b|\overset{(n_{p}>p)}{<}\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Funciones elementales +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, definimos +\begin_inset Formula $a^{n}:=a\cdots a$ +\end_inset + + ( +\begin_inset Formula $n$ +\end_inset + + veces). + Esta definición puede extenderse a +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + definiendo +\begin_inset Formula $a^{0}:=1$ +\end_inset + + y +\begin_inset Formula $a^{n}=\frac{1}{a^{-n}}$ +\end_inset + + para +\begin_inset Formula $n\in\mathbb{Z}^{-}$ +\end_inset + +. + Con exponentes racionales, se define +\begin_inset Formula $a^{\frac{m}{n}}:=\sqrt[n]{a^{m}}$ +\end_inset + +, y podemos probar fácilmente que si +\begin_inset Formula $\frac{p}{q}=\frac{m}{n}$ +\end_inset + + entonces +\begin_inset Formula $a^{\frac{p}{q}}=a^{\frac{m}{n}}$ +\end_inset + +, para lo cual necesitamos las propiedades de la exponencial: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{r+s}=a^{r}a^{s}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(ab)^{r}=a^{r}b^{r}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(a^{r})^{s}=a^{rs}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $r<s\implies(a>1\implies a^{r}<a^{s})\land(0<a<1\implies a^{r}>a^{s})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0<a<b\implies(r>0\implies a^{r}<b^{r})\land(r<0\implies a^{r}>b^{r})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos demostrar estas propiedades de forma sencilla demostrándolas primero + para exponentes naturales y luego generalizando en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. + Para exponentes reales, definimos +\begin_inset Formula +\[ +a^{x}=\lim_{n}a^{r_{n}} +\] + +\end_inset + +donde +\begin_inset Formula $(r_{n})_{n}$ +\end_inset + + es una sucesión de racionales que converge a +\begin_inset Formula $x$ +\end_inset + +. + Este límite existe y es independiente de la sucesión +\begin_inset Formula $(r_{n})_{n}$ +\end_inset + + escogida. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Primero demostraremos que +\begin_inset Formula $\forall a>0,\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall r\in\mathbb{Q},0<r<\frac{1}{n_{0}},|a^{r}-1|<\varepsilon$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, como +\begin_inset Formula $\lim_{n}a^{\frac{1}{n}}=1$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a^{\frac{1}{n}}-1|<\varepsilon$ +\end_inset + +. + Entonces, si +\begin_inset Formula $a>1$ +\end_inset + +, +\begin_inset Formula $0<a^{r}-1<a^{\frac{1}{n_{0}}}-1<\varepsilon$ +\end_inset + +, y si +\begin_inset Formula $0<a<1$ +\end_inset + +, +\begin_inset Formula $a^{r}>a^{\frac{1}{n_{0}}}$ +\end_inset + + luego +\begin_inset Formula $0<1-a^{r}<1-a^{\frac{1}{n_{0}}}<\varepsilon$ +\end_inset + +. + Pasemos a demostrar la existencia de +\begin_inset Formula $\lim_{n}a^{r_{n}}$ +\end_inset + +. + Para +\begin_inset Formula $x>0$ +\end_inset + +, como +\begin_inset Formula $(r_{n})_{n}$ +\end_inset + + es convergente entonces es acotada, por lo que +\begin_inset Formula $\exists K\in\mathbb{Q}:0\leq r_{n}\leq K$ +\end_inset + + a partir de cierto elemento, y entonces +\begin_inset Formula $a^{r_{n}}\leq a^{K}:=M$ +\end_inset + + si +\begin_inset Formula $a>1$ +\end_inset + + o +\begin_inset Formula $a^{r_{n}}<a^{0}=1:=M$ +\end_inset + +. + Así, si +\begin_inset Formula $r_{m}\geq r_{n}$ +\end_inset + +, entonces +\begin_inset Formula $|a^{r_{n}}-a^{r_{m}}|=a^{r_{n}}(a^{r_{m}-r_{n}}-1)\leq M(a^{r_{m}-r_{n}}-1)$ +\end_inset + +, y en general, +\begin_inset Formula $|a^{r_{n}}-a^{r_{m}}|\leq M(a^{|r_{m}-r_{n}|}-1)$ +\end_inset + +, y aplicando lo anteriormente demostrado sobre el lado derecho, se tiene + que +\begin_inset Formula $(a^{r_{n}})_{n}$ +\end_inset + + es de Cauchy. + El caso para +\begin_inset Formula $x<0$ +\end_inset + + es análogo. + Así, fijado +\begin_inset Formula $\frac{1}{m_{1}}>0$ +\end_inset + +, existe +\begin_inset Formula $k_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n,m\geq k_{0}$ +\end_inset + +, +\begin_inset Formula $|r_{n}-r_{m}|<\frac{1}{m_{1}}$ +\end_inset + + y por tanto +\begin_inset Formula $|a^{r_{n}}-a^{r_{m}}|\leq M(a^{|r_{m}-r_{n}|}-1)\leq M\frac{\varepsilon}{M}=\varepsilon$ +\end_inset + +. + Sea ahora +\begin_inset Formula $y:=\lim_{n}a^{r_{n}}$ +\end_inset + + y +\begin_inset Formula $(p_{n})_{n}$ +\end_inset + + otra sucesión de racionales con +\begin_inset Formula $x=\lim_{n}p_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $|a^{r_{n}}-a^{p_{n}}|\leq M(a^{|p_{n}-r_{n}|}-1)$ +\end_inset + +, y fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $|p_{n}-r_{n}|\leq|p_{n}-x|+|x-r_{n}|<\frac{1}{2m_{1}}+\frac{1}{2m_{1}}=\frac{1}{m_{1}}$ +\end_inset + +, y finalmente +\begin_inset Formula $|a^{p_{n}}-y|\leq|a^{p_{n}}-a^{r_{n}}|+|a^{r_{n}}-y|\leq\varepsilon+\varepsilon=2\varepsilon$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +A continuación vemos las propiedades de la exponencial para exponentes reales: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{x+y}=a^{x}a^{y}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Como +\begin_inset Formula $\lim_{n}(q_{n}+r_{n})=\lim_{n}q_{n}+\lim_{n}r_{n}=x+y$ +\end_inset + +, entonces +\begin_inset Formula +\[ +a^{x+y}=\lim_{n}a^{q_{n}+r_{n}}=\lim_{n}(a^{q_{n}}a^{r_{n}})=\lim_{n}a^{q_{n}}+\lim_{n}a^{r_{n}}=a^{x}+a^{y} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(ab)^{x}=a^{x}b^{x}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +(ab)^{x}=\lim_{n}(ab)^{q_{n}}=\lim_{n}a^{q_{n}}b^{q_{n}}=\lim_{n}a^{q_{n}}\lim_{n}b^{q_{n}}=a^{x}b^{x} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(a^{x})^{y}=a^{xy}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Primero probamos que si +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $q\in\mathbb{Q}$ +\end_inset + + entonces +\begin_inset Formula $\lim_{n}a_{n}^{q}=a^{q}$ +\end_inset + +, es decir, que +\begin_inset Formula $\lim_{n}a_{n}^{q}=(\lim_{n}a_{n})^{q}$ +\end_inset + +. + Sea +\begin_inset Formula $q=\frac{r}{k}>0$ +\end_inset + + y +\begin_inset Formula $a>0$ +\end_inset + +. + Comenzamos probando que +\begin_inset Formula $\lim_{n}a_{n}^{\frac{1}{k}}=a^{\frac{1}{k}}$ +\end_inset + +, para lo que usaremos la ecuación ciclotómica: +\begin_inset Formula +\[ +|a_{n}^{\frac{1}{k}}-a^{\frac{1}{k}}|=\frac{|a_{n}-a|}{a_{n}^{\frac{k-1}{k}}+a_{n}^{\frac{k-2}{k}}a+\dots+a_{n}a^{\frac{k-2}{k}}+a^{\frac{k-1}{k}}}\leq\frac{|a_{n}-a|}{a^{\frac{k-1}{k}}}\leq\frac{a^{\frac{k-1}{k}}\varepsilon}{a^{\frac{k-1}{k}}}=\varepsilon +\] + +\end_inset + +De aquí deducimos que +\begin_inset Formula +\[ +\lim_{n}a_{n}^{q}=\lim_{n}a_{n}^{\frac{r}{k}}=\lim_{n}(a^{\frac{1}{k}})^{r}=\left(\lim_{n}a_{n}^{\frac{1}{k}}\right)^{r}=(a^{\frac{1}{k}})^{r}=a^{\frac{r}{k}}=a^{q} +\] + +\end_inset + +El caso en que +\begin_inset Formula $a<0$ +\end_inset + + es análogo. + Ahora, si +\begin_inset Formula $a=\lim_{n}a_{n}=0$ +\end_inset + +, entonces +\begin_inset Formula $\forall\varepsilon>0,\exists n_{1}\in\mathbb{N}:\forall n>n_{1},a_{n}<\varepsilon^{\frac{1}{q}}$ +\end_inset + +, por lo que +\begin_inset Formula $|a_{n}^{q}-0|=a_{n}^{q}<(\varepsilon^{\frac{1}{q}})^{q}=\varepsilon$ +\end_inset + +. + Pasemos a demostrar que +\begin_inset Formula $(a^{x})^{y}=a^{xy}$ +\end_inset + +. + Si +\begin_inset Formula $a>1$ +\end_inset + + y tomamos +\begin_inset Formula $\lim_{n}r_{n}=x$ +\end_inset + + y +\begin_inset Formula $\lim_{n}q_{n}=y$ +\end_inset + + sucesiones crecientes de racionales, usando las propiedades de monotonía + y límites, +\begin_inset Formula +\[ +(a^{x})^{y}=\sup\{(a^{x})^{q_{m}}\}_{m\in\mathbb{N}}=\sup\{\sup\{(a^{r_{n}})^{q_{m}}\}_{n\in\mathbb{N}}\}_{m\in\mathbb{N}}= +\] + +\end_inset + + +\begin_inset Formula +\[ +=\sup\{\sup\{a^{r_{n}q_{m}}\}_{n\in\mathbb{N}}\}_{m\in\mathbb{N}}=\sup\{a^{xq_{m}}\}_{m\in\mathbb{N}}=a^{xy} +\] + +\end_inset + +El caso +\begin_inset Formula $a<1$ +\end_inset + + se reduce a este tomando inversos, y el caso +\begin_inset Formula $a=1$ +\end_inset + + es trivial. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $x<y\implies(a>1\implies a^{x}<a^{y})\land(0<a<1\implies a^{x}>a^{y})$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $a>1$ +\end_inset + +, sean +\begin_inset Formula $\varepsilon=\frac{y-x}{3}$ +\end_inset + + y +\begin_inset Formula $s,t\in\mathbb{Q}$ +\end_inset + + tales que +\begin_inset Formula $x+\varepsilon<s<t<y-\varepsilon$ +\end_inset + +. + Existe entonces +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $q_{n}<s$ +\end_inset + + y +\begin_inset Formula $t<r_{n}$ +\end_inset + +. + Por tanto +\begin_inset Formula $a^{q_{n}}<a^{s}<a^{t}<a^{r_{n}}$ +\end_inset + +, y tomando límites, +\begin_inset Formula $a^{x}\leq a^{s}<a^{t}\leq a^{y}$ +\end_inset + +. + Para +\begin_inset Formula $0<a<1$ +\end_inset + +, la demostración es análoga. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0<a<b\implies(x>0\implies a^{x}<b^{x})\land(x<0\implies a^{x}>b^{x})$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $x>0$ +\end_inset + +, se trata de demostrar que +\begin_inset Formula $\left(\frac{b}{a}\right)^{x}=\frac{b^{x}}{a^{x}}>1$ +\end_inset + + dado +\begin_inset Formula $\frac{b}{a}>1$ +\end_inset + +. + Sea +\begin_inset Formula $(p_{n})_{n}$ +\end_inset + + una sucesión creciente con límite +\begin_inset Formula $x$ +\end_inset + + tal que +\begin_inset Formula $p_{n}>0$ +\end_inset + +. + Entonces +\begin_inset Formula $\left(\frac{b}{a}\right)^{r_{n}}\geq\left(\frac{b}{a}\right)^{r_{1}}>\left(\frac{b}{a}\right)^{0}=1$ +\end_inset + +, y tomando límites, +\begin_inset Formula $\left(\frac{b}{a}\right)^{x}\geq\left(\frac{b}{a}\right)^{r_{1}}>1$ +\end_inset + +. + Para +\begin_inset Formula $x<0$ +\end_inset + +, como +\begin_inset Formula $a^{y}>0\forall y\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $a^{-x}<b^{-x}\implies\frac{1}{a^{x}}<\frac{1}{b^{x}}\implies b^{x}<a^{x}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a^{x_{n}}=a^{\lim_{n}x_{n}}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $x:=\lim_{n}x_{n}$ +\end_inset + +. + Como +\begin_inset Formula $|a^{x}-a^{x_{n}}|=|a^{x}||1-a^{x_{n}-x}|$ +\end_inset + +, basta probar que para +\begin_inset Formula $(y_{m})_{m}$ +\end_inset + + con +\begin_inset Formula $\lim_{m}y_{m}=0$ +\end_inset + +, se cumple que +\begin_inset Formula $\lim_{n}a^{y_{m}}=a^{0}=1$ +\end_inset + +. + Ahora, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $a^{\frac{1}{n_{0}}}-1<\varepsilon$ +\end_inset + +. + Si +\begin_inset Formula $y_{m}>0\forall m$ +\end_inset + +, existe +\begin_inset Formula $m_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $m>m_{0}$ +\end_inset + + entonces +\begin_inset Formula $0<y_{m}<\frac{1}{n_{0}}$ +\end_inset + + y +\begin_inset Formula $a^{y_{m}}-1<a^{\frac{1}{n_{0}}}-1<\varepsilon$ +\end_inset + +. + Si +\begin_inset Formula $y_{m}<0\forall m$ +\end_inset + +, existe +\begin_inset Formula $m_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $m>m_{0}$ +\end_inset + + entonces +\begin_inset Formula $0<|y_{m}|<\frac{1}{n_{0}}$ +\end_inset + + y +\begin_inset Formula $1-a^{y_{m}}=1-\frac{1}{a^{-y_{m}}}=\frac{a^{-y_{m}}-1}{a^{-y_{m}}}<\frac{\varepsilon}{1}=\varepsilon$ +\end_inset + + por ser +\begin_inset Formula $a^{-y_{m}}>1$ +\end_inset + +. + Si +\begin_inset Formula $y_{m}$ +\end_inset + + puede cambiar de signo, combinamos ambas pruebas y obtenemos que +\begin_inset Formula $\forall\varepsilon>0,\exists m_{0}\in\mathbb{N}:\forall m>m_{0},|a^{y_{m}}-1|<\varepsilon$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{x}$ +\end_inset + + no está acotada superiormente para +\begin_inset Formula $a>1$ +\end_inset + +: +\begin_inset Formula $a>1\implies\forall k\in\mathbb{R},\exists t\in\mathbb{R}:(x>t\implies a^{x}>k)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Supongamos por reducción al absurdo que +\begin_inset Formula $\exists K\in\mathbb{R}:\forall x\in\mathbb{R},a^{x}\leq K$ +\end_inset + +. + En particular, existe +\begin_inset Formula $K\in\mathbb{R}$ +\end_inset + + tal que para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + se tiene +\begin_inset Formula $a^{n}\leq K$ +\end_inset + + y por tanto +\begin_inset Formula $a\leq K^{\frac{1}{n}}$ +\end_inset + +. + Por otro lado, como +\begin_inset Formula $\lim_{n}K^{\frac{1}{n}}=1$ +\end_inset + + y +\begin_inset Formula $a>1$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $K^{\frac{1}{n}}<a$ +\end_inset + +, por lo que +\begin_inset Formula $a^{n_{0}}>K\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\inf\{a^{x}\}_{x\in\mathbb{R}}=0$ +\end_inset + + para +\begin_inset Formula $a<1$ +\end_inset + +: +\begin_inset Formula $a<1\implies\forall\varepsilon>0,\exists t\in\mathbb{R}:(x>t\implies a^{x}<\varepsilon)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tomamos +\begin_inset Formula $b:=\frac{1}{a}>1$ +\end_inset + + y aplicamos el apartado anterior. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $0<a\neq1$ +\end_inset + + y +\begin_inset Formula $x>0$ +\end_inset + +, +\begin_inset Formula $\exists!y\in\mathbb{R}:a^{y}=x$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Supongamos +\begin_inset Formula $a>1$ +\end_inset + + y sea +\begin_inset Formula $A:=\{z\in\mathbb{R}:a^{z}\leq x\}$ +\end_inset + +, que sabemos acotado superiormente. + Sea entonces +\begin_inset Formula $y:=\sup A$ +\end_inset + + y +\begin_inset Formula $(x_{n})_{n\in\mathbb{N}}$ +\end_inset + + una sucesión de elementos de +\begin_inset Formula $A$ +\end_inset + + que converge a +\begin_inset Formula $y$ +\end_inset + +, por lo que +\begin_inset Formula $a^{x_{n}}\leq x$ +\end_inset + +. + Si fuera +\begin_inset Formula $a^{y}<x$ +\end_inset + +, dado que +\begin_inset Formula $\frac{x}{a^{y}}>1$ +\end_inset + +, existe un +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $a^{\frac{1}{n}}<\frac{x}{a^{y}}$ +\end_inset + +, y si tomamos +\begin_inset Formula $\varepsilon=\frac{1}{n}$ +\end_inset + +, se tiene que +\begin_inset Formula $a^{\varepsilon}<\frac{x}{a^{y}}$ +\end_inset + + y por tanto +\begin_inset Formula $a^{y+\varepsilon}<x$ +\end_inset + +. + Pero esto contradice la definición de +\begin_inset Formula $y$ +\end_inset + + como supremo de +\begin_inset Formula $A$ +\end_inset + +. + Ahora supongamos +\begin_inset Formula $0<a<1$ +\end_inset + + y sea +\begin_inset Formula $a^{\prime}:=\frac{1}{a}>1$ +\end_inset + + y +\begin_inset Formula $x^{\prime}:=\frac{1}{x}$ +\end_inset + +. + Aplicando lo anterior, existe un único +\begin_inset Formula $y\in\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $(a^{\prime})^{y}=x^{\prime}$ +\end_inset + +, es decir, +\begin_inset Formula $\left(\frac{1}{a}\right)^{y}=\frac{1}{a^{y}}=\frac{1}{x}$ +\end_inset + +, luego +\begin_inset Formula $a^{y}=x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +logaritmo +\series default + en +\series bold +base +\series default + +\begin_inset Formula $a$ +\end_inset + + de +\begin_inset Formula $x$ +\end_inset + + ( +\begin_inset Formula $\log_{a}x$ +\end_inset + +) al único +\begin_inset Formula $y\in\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $a^{y}=x$ +\end_inset + +. + Si +\begin_inset Formula $a=e$ +\end_inset + +, lo llamamos +\series bold +logaritmo neperiano +\series default +, escrito +\begin_inset Formula $\log x$ +\end_inset + + o +\begin_inset Formula $\ln x$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log_{a}a^{x}=x$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $z=\log_{a}a^{x}$ +\end_inset + +, este es el único real con +\begin_inset Formula $a^{z}=a^{x}$ +\end_inset + +, luego +\begin_inset Formula $z=x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{\log_{a}x}=x$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $z=\log_{a}x$ +\end_inset + +, este es el único real con +\begin_inset Formula $a^{z}=x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log_{a}xy=\log_{a}x+\log_{a}y$ +\end_inset + +; +\begin_inset Formula $\log_{a}\frac{x}{y}=\log_{a}x-\log_{a}y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $\alpha=\log_{a}x$ +\end_inset + + y +\begin_inset Formula $\beta=\log_{a}y$ +\end_inset + +, entonces +\begin_inset Formula $a^{\alpha+\beta}=a^{\alpha}a^{\beta}=xy$ +\end_inset + +, por lo que +\begin_inset Formula $\log_{a}xy=\alpha+\beta=\log_{a}x+\log_{a}y$ +\end_inset + +. + +\begin_inset Formula $a^{\alpha-\beta}=\frac{a^{\alpha}}{a^{\beta}}=\frac{x}{y}$ +\end_inset + +, por lo que +\begin_inset Formula $\log_{a}\frac{x}{y}=\alpha-\beta=\log_{a}x-\log_{a}y$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log_{a}x^{y}=y\log_{a}x$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a^{y\log_{a}x}=(a^{\log_{a}x})^{y}=x^{y}\implies\log_{a}x^{y}=y\log_{a}x +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a>1\land0<x<y\implies\log_{a}x<\log_{a}y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si fuera +\begin_inset Formula $\alpha\geq\beta$ +\end_inset + +, como +\begin_inset Formula $a>1$ +\end_inset + +, se tendría que +\begin_inset Formula $x=a^{\alpha}\geq a^{\beta}=y\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0<a<1\land0<x<y\implies\log_{a}x>\log_{a}y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Newline newline +\end_inset + +Si fuera +\begin_inset Formula $\beta\geq\alpha$ +\end_inset + +, como +\begin_inset Formula $0<a<1$ +\end_inset + +, se tendría que +\begin_inset Formula $y=a^{\beta}\leq a^{\alpha}=x\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}x_{n}>0\land\forall n,x_{n}>0\implies\lim_{n}\log_{a}x_{n}=\log_{a}\lim_{n}x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $x:=\lim_{n}x_{n}>0$ +\end_inset + + y queremos demostrar que +\begin_inset Formula $\lim_{n}\log_{a}x_{n}=\log_{a}x$ +\end_inset + +, lo que equivale a que +\begin_inset Formula $\lim_{n}(\log_{a}x_{n}-\log_{a}x)=0$ +\end_inset + + y por tanto a que +\begin_inset Formula $\lim_{n}\log_{a}\frac{x_{n}}{x}=0$ +\end_inset + +. + Para esto basta probar que si +\begin_inset Formula $(c_{n})_{n}$ +\end_inset + + es una sucesión con +\begin_inset Formula $c_{n}>0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}c_{n}=1$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}\log_{a}c_{n}=0$ +\end_inset + +. + Sea +\begin_inset Formula $\beta_{n}:=\log_{a}c_{n}$ +\end_inset + + y supongamos que +\begin_inset Formula $\lim_{n}\beta_{n}\neq0$ +\end_inset + +. + Debe existir por tanto un +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + exista un +\begin_inset Formula $m>n$ +\end_inset + + con +\begin_inset Formula $|\beta_{m}|>\varepsilon$ +\end_inset + +. + Así, para +\begin_inset Formula $n=1$ +\end_inset + + existe +\begin_inset Formula $n_{1}>1$ +\end_inset + + con +\begin_inset Formula $|\beta_{n_{1}}|>\varepsilon$ +\end_inset + +, y podemos encontrar +\begin_inset Formula $n_{2}>n_{1}$ +\end_inset + + con +\begin_inset Formula $|\beta_{n_{2}}|>\varepsilon$ +\end_inset + +. + Definimos por recurrencia una subsucesión +\begin_inset Formula $(\beta_{n_{k}})_{k}$ +\end_inset + + con +\begin_inset Formula $|\beta_{n_{k}}|>\varepsilon$ +\end_inset + +. + Podemos suponer que todos son positivos o negativos. + Pero entonces, para el primer caso, +\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}>a^{\varepsilon}:=M>a^{0}=1$ +\end_inset + +. + En el segundo caso, +\begin_inset Formula $\beta_{n_{k}}<-\varepsilon$ +\end_inset + + y por tanto +\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}<a^{-\varepsilon}:=M<a^{0}=1$ +\end_inset + +. + Para ambos casos se tiene que +\begin_inset Formula $\lim_{n}c_{n_{k}}\neq1\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\lim_{n}\sin x_{n}=\sin\lim_{n}x_{n}$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\cos x_{n}=\cos\lim_{n}x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $c=\lim_{n}x_{n}$ +\end_inset + +, y se tiene que +\begin_inset Formula $\sin x\leq x\leq\tan x$ +\end_inset + + para +\begin_inset Formula $x\in[0,\frac{\pi}{2}]$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +|\sin x-\sin c|=2\left|\sin\frac{x-c}{2}\cos\frac{x+c}{2}\right|\leq2\left|\sin\frac{x-c}{2}\right|\leq2\frac{|x-c|}{2}=|x-c| +\] + +\end_inset + +Por tanto, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, sea +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $|x_{n}-c|<\varepsilon$ +\end_inset + +. + Entonces, para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $|\sin x_{n}-\sin c|\leq|x-c|<\varepsilon$ +\end_inset + +. + Para el coseno, +\begin_inset Formula +\[ +|\cos x-\cos c|=\left|-2\sin\frac{x+c}{2}\sin\frac{x-c}{2}\right|\leq2\left|\sin\frac{x-c}{2}\right|\leq|x-c| +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Límites infinitos +\end_layout + +\begin_layout Standard +La sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + de números reales tiene límite +\begin_inset Quotes cld +\end_inset + +más infinito +\begin_inset Quotes crd +\end_inset + + ( +\begin_inset Formula $\lim_{n}a_{n}=+\infty$ +\end_inset + +) si +\begin_inset Formula $\forall M>0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},a_{n}>M$ +\end_inset + +, y tiene límite +\begin_inset Quotes cld +\end_inset + +menos infinito +\begin_inset Quotes crd +\end_inset + + ( +\begin_inset Formula $\lim_{n}a_{n}=-\infty$ +\end_inset + +) si +\begin_inset Formula $\forall M<0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},a_{n}<M$ +\end_inset + +. + Podemos generalizar el álgebra de límites con: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\begin{array}{ccc} +a+(-\infty)=-\infty & a-(+\infty)=-\infty & a-(-\infty)=+\infty\\ +\frac{a}{\pm\infty}=0 & a>0\implies a(+\infty)=+\infty & a>0\implies a(-\infty)=-\infty\\ +a<0\implies a(+\infty)=-\infty & a<0\implies a(-\infty)=+\infty & (+\infty)+(+\infty)=+\infty\\ +(-\infty)+(-\infty)=-\infty & (+\infty)(+\infty)=+\infty & (-\infty)(-\infty)=+\infty\\ +(+\infty)(-\infty)=-\infty & (+\infty)^{+\infty}=+\infty & (+\infty)^{-\infty}=0 +\end{array} +\] + +\end_inset + +Además, si +\begin_inset Formula $\lim_{n}a_{n}=0$ +\end_inset + +, +\begin_inset Formula $a_{n}>0\forall n$ +\end_inset + + y +\begin_inset Formula $\lim_{n}b_{n}=+\infty$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}a_{n}^{b_{n}}=0$ +\end_inset + +. + Sin embargo, nada puede decirse en general de: +\begin_inset Formula +\[ +\begin{array}{llll} +(+\infty)+(-\infty) & (\pm\infty)\cdot0 & \frac{\pm\infty}{\pm\infty} & \frac{0}{0}\\ +\frac{a}{0} & 1^{\pm\infty} & (\pm\infty)^{0} & 0^{0} +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos a estas situaciones +\series bold +indeterminaciones +\series default +\SpecialChar endofsentence + +\end_layout + +\begin_layout Section +Algunas sucesiones notables. + Jerarquía de sucesiones divergentes +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lim_{n}x_{n}=\pm\infty$ +\end_inset + + entonces +\begin_inset Formula $\lim_{n}\left(1+\frac{1}{x_{n}}\right)^{x_{n}}=e$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\left(1-\frac{1}{x_{n}}\right)^{x_{n}}=e^{-1}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $x_{n}=n$ +\end_inset + + es cierto. + Como +\begin_inset Formula $[x_{n}]\leq x_{n}<[x_{n}]+1$ +\end_inset + + y por tanto +\begin_inset Formula $\frac{1}{1+[x_{n}]}<\frac{1}{x_{n}}\leq\frac{1}{[x_{n}]}$ +\end_inset + +, se tiene que +\begin_inset Formula $\left(1+\frac{1}{[x_{n}]+1}\right)^{[x_{n}]}\leq\left(1+\frac{1}{x_{n}}\right)^{[x_{n}]}\leq\left(1+\frac{1}{x_{n}}\right)^{x_{n}}\leq\left(1+\frac{1}{[x_{n}]}\right)^{x_{n}}\leq\left(1+\frac{1}{[x_{n}]}\right)^{[x_{n}]+1}$ +\end_inset + +. + Sabemos además que +\begin_inset Formula $\lim_{n}\left(1+\frac{1}{n+1}\right)^{n}=\lim_{n}\left(1+\frac{1}{n}\right)^{n+1}=e$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{0}$ +\end_inset + +, +\begin_inset Formula $\left|\left(1+\frac{1}{n+1}\right)^{n}-e\right|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $e-\varepsilon<\left(1+\frac{1}{n+1}\right)^{n}<e+\varepsilon$ +\end_inset + +, y +\begin_inset Formula $\left|\left(1+\frac{1}{n}\right)^{n+1}-e\right|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $e-\varepsilon<\left(1+\frac{1}{n}\right)^{n+1}<e+\varepsilon$ +\end_inset + +. + Ahora, como +\begin_inset Formula $\lim_{n}x_{n}=+\infty$ +\end_inset + +, existe +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{1}$ +\end_inset + +, +\begin_inset Formula $n_{0}<[x_{n}]\in\mathbb{N}$ +\end_inset + +, luego lo anterior se cumple, por lo que +\begin_inset Formula $\left|\left(1+\frac{1}{x_{n}}\right)^{x_{n}}-e\right|<\varepsilon$ +\end_inset + +. + La segunda parte se obtiene de que +\begin_inset Formula $\left(1-\frac{1}{x_{n}}\right)^{x_{n}}=\left(\frac{x_{n}}{x_{n}-1}\right)^{-x_{n}}=\frac{1}{\left(1+\frac{1}{x_{n}-1}\right)^{x_{n}}}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si existe +\begin_inset Formula $\lim_{n}\frac{z_{n+1}}{z_{n}}=w\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $|w|<1$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}z_{n}=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Se tendría que existe +\begin_inset Formula $0<a<1$ +\end_inset + + y +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\left|\frac{z_{n+1}}{z_{n}}\right|<a<1$ +\end_inset + +. + En particular, +\begin_inset Formula $|z_{n_{0}+1}|<|z_{n_{0}}|a$ +\end_inset + +, +\begin_inset Formula $|z_{n_{0}+2}|<|z_{n_{0}+1}|a<|z_{n_{0}}|a^{2}$ +\end_inset + +, y en general, +\begin_inset Formula $|z_{n_{0}+k}|<|z_{n_{0}}|a^{k}$ +\end_inset + +. + Pero +\begin_inset Formula $\lim_{n}a_{n}=0$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}|z_{n}|=0$ +\end_inset + + y por tanto +\begin_inset Formula $\lim_{n}z_{n}=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}\frac{a_{k}n^{k}+\dots+a_{0}}{b_{r}n^{r}+\dots+b_{0}}=\begin{cases} +\frac{a_{k}}{b_{r}} & \text{si }k=r\\ +0 & \text{si }k<r\\ +\pm\infty & \text{si }k>r\text{, dependiendo del signo de \ensuremath{\frac{a_{k}}{b_{r}}}.} +\end{cases}$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para demostrarlo, en cada caso, dividimos numerador y denominador por +\begin_inset Formula $\min\{k,r\}$ +\end_inset + + y aplicamos propiedades de los límites para +\begin_inset Formula $k=r$ +\end_inset + + (pues ambos existen y son no nulos) y de los límites infinitos para +\begin_inset Formula $k\neq r$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}a_{n}=\infty$ +\end_inset + + y +\begin_inset Formula $\lim_{n}b_{n}=\infty$ +\end_inset + +, entonces +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es un infinito +\series bold +de orden superior +\series default + a +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + y escribimos +\begin_inset Formula $b_{n}\ll a_{n}$ +\end_inset + + si +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=\infty$ +\end_inset + +. + Si existen +\begin_inset Formula $\alpha$ +\end_inset + + y +\begin_inset Formula $\beta$ +\end_inset + + con +\begin_inset Formula $0<\alpha\leq\frac{a_{n}}{b_{n}}\leq\beta$ +\end_inset + + para +\begin_inset Formula $n>n_{0}$ +\end_inset + +, se dice que ambas tienen el +\series bold +mismo orden de infinitud +\series default +. + Y si además +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=1$ +\end_inset + +, se dice que son +\series bold +equivalentes +\series default +. + Así, si +\begin_inset Formula $b>0$ +\end_inset + +, +\begin_inset Formula $c>1$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\log n\ll n^{b}\ll c^{n}\ll n^{dn} +\] + +\end_inset + +Si además +\begin_inset Formula $d\geq1$ +\end_inset + +, entonces +\begin_inset Formula $c^{n}\ll n!\ll n^{dn}$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Todas, salvo la primera, son consecuencia del apartado (2) anterior. + Así, para demostrar +\begin_inset Formula $n^{b}\ll c^{n}$ +\end_inset + +, tomamos +\begin_inset Formula $z_{n}:=\frac{n^{b}}{c^{n}}$ +\end_inset + + y entonces +\begin_inset Formula $\lim_{n}\frac{z_{n+1}}{z_{n}}=\lim_{n}\frac{(n+1)^{b}c^{n}}{n^{b}c^{n+1}}=\lim_{n}\left(1+\frac{1}{n}\right)^{b}\frac{1}{c}=\frac{1}{c}<1$ +\end_inset + +, por lo que +\begin_inset Formula $\lim_{n}z_{n}=0$ +\end_inset + +. + Para demostrar que +\begin_inset Formula $\log n\ll n^{b}$ +\end_inset + + para +\begin_inset Formula $b>0$ +\end_inset + +, tomamos +\begin_inset Formula $b=1$ +\end_inset + + y tenemos en cuenta que +\begin_inset Formula $\log n=M\log_{10}n$ +\end_inset + +. + Si +\begin_inset Formula $10^{k-1}\leq n<10^{k}$ +\end_inset + +, entonces +\begin_inset Formula $0\leq\frac{log_{10}n}{n}\leq\frac{k}{10^{k-1}}=10\frac{k}{10^{k}}$ +\end_inset + +. + Aplicando el apartado (2) anterior y la regla del sándwich se obtiene el + resultado. + Para +\begin_inset Formula $b>1$ +\end_inset + + el resultado es consecuencia de esto y de que +\begin_inset Formula $n<n^{b}$ +\end_inset + +. + Si +\begin_inset Formula $b<1$ +\end_inset + +, tomamos +\begin_inset Formula $m\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\frac{1}{m}<b$ +\end_inset + +. + Para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existe +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $(k-1)^{m}\leq n<k^{m}$ +\end_inset + +, y además +\begin_inset Formula $\lim_{n}k=+\infty$ +\end_inset + +. + Ahora, puesto que +\begin_inset Formula $0<\frac{\log_{10}n}{n^{b}}\leq\frac{\log_{10}n}{\sqrt[m]{n}}\leq\frac{m\log_{10}k}{k-1}$ +\end_inset + + y hemos probado que +\begin_inset Formula $\lim_{k}\frac{\log_{10}k}{k}=0$ +\end_inset + +, se obtiene que, también en este caso, +\begin_inset Formula $\lim_{n}\log\frac{n}{n^{b}}=0$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Equivalencias +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + con +\begin_inset Formula $0<|x_{n}|<1$ +\end_inset + +, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log(1+x_{n})\sim x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Supongamos +\begin_inset Formula $0<x_{n}<1\forall n$ +\end_inset + +. + Entonces, si +\begin_inset Formula $y_{n}:=\frac{1}{x_{n}}$ +\end_inset + +, +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n})}{x_{n}}=\lim_{n}\log(1+x_{n})^{\frac{1}{x_{n}}}=\lim_{n}\log\left(1+\frac{1}{y_{n}}\right)^{y_{n}}=\log\lim_{n}\left(1+\frac{1}{y_{n}}\right)^{y_{n}}=\log e=1$ +\end_inset + +. + Cuando +\begin_inset Formula $0>x_{n}>-1$ +\end_inset + +, la prueba es idéntica, pues +\begin_inset Formula $\lim_{n}y_{n}=-\infty$ +\end_inset + +. + Para el caso general, los términos de +\begin_inset Formula $x_{n}$ +\end_inset + + se dividen en dos subsucesiones distintas: +\begin_inset Formula $(x_{n}^{\prime})_{n}$ +\end_inset + + de términos positivos y +\begin_inset Formula $(x_{n}^{\prime\prime})_{n}$ +\end_inset + + de negativos. + Entonces +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n}^{\prime})}{x_{n}^{\prime}}=1$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n}^{\prime\prime})}{x_{n}^{\prime\prime}}=1$ +\end_inset + +, por lo que +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n})}{x_{n}}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e^{x_{n}}-1\sim x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $y_{n}:=e^{x_{n}}-1$ +\end_inset + +, entonces +\begin_inset Formula $y_{n}+1=e^{x_{n}}$ +\end_inset + +, luego +\begin_inset Formula $x_{n}=\log(1+y_{n})$ +\end_inset + +. + Como +\begin_inset Formula $\lim_{n}y_{n}=0$ +\end_inset + +, por el apartado anterior, +\begin_inset Formula $\lim_{n}\frac{e^{x_{n}}-1}{x_{n}}=\lim_{n}\frac{y_{n}}{\log(1+y_{n})}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=1$ +\end_inset + + con +\begin_inset Formula $x_{n}\neq1$ +\end_inset + + y +\begin_inset Formula $\lim_{n}y_{n}=\pm\infty$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}x_{n}^{y_{n}}=e^{\lim_{n}y_{n}(x_{n}-1)} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $(x_{n})^{y_{n}}=e^{y_{n}\log x_{n}}=e^{y_{n}\log(1+(x_{n}-1))}$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}(x_{n})^{y_{n}}=e^{\lim_{n}y_{n}\log(1+(x_{n}-1))}$ +\end_inset + +. + Así, como +\begin_inset Formula $\lim_{n}(x_{n}-1)=0$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}y_{n}\log(1+(x_{n}-1))=\lim_{n}y_{n}(x_{n}-1)\frac{\log(1+(x_{n}-1))}{x_{n-1}}=\lim_{n}y_{n}(x_{n}-1)$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq0$ +\end_inset + +, entonces +\begin_inset Formula $\sin x_{n}\sim x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $x\in(0,\frac{\pi}{2})$ +\end_inset + +, se tiene que +\begin_inset Formula $\sin x\leq x\leq\tan x$ +\end_inset + +, luego +\begin_inset Formula $1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}$ +\end_inset + +, y si +\begin_inset Formula $x_{n}>0\forall n\in\mathbb{N}$ +\end_inset + +, entonces +\begin_inset Formula $1\leq\frac{x_{n}}{\sin x_{n}}\leq\frac{1}{\cos x_{n}}$ +\end_inset + +. + Dado que +\begin_inset Formula $\lim_{n}\cos x_{n}=\cos0=1$ +\end_inset + +, por la regla del sandwich, +\begin_inset Formula $\lim_{n}\frac{x_{n}}{\sin x_{n}}=1$ +\end_inset + +. + Si +\begin_inset Formula $x\in(-\frac{\pi}{2},0)$ +\end_inset + +, +\begin_inset Formula $\tan x\leq x\leq\sin x$ +\end_inset + +, luego +\begin_inset Formula $\frac{1}{\cos x}\geq\frac{x}{\sin x}\geq1$ +\end_inset + + por ser +\begin_inset Formula $\sin x>0$ +\end_inset + + y llegamos a la misma conclusión. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Criterios de Stolz: +\series default + Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + son sucesiones de reales tales que +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + es estrictamente creciente o decreciente y bien +\begin_inset Formula $\lim_{n}a_{n}=\lim_{n}b_{n}=0$ +\end_inset + +, bien +\begin_inset Formula $\lim_{n}b_{n}=\infty$ +\end_inset + +, si existe +\begin_inset Formula $\lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L\in\overline{\mathbb{R}}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=L$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $L:=\lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ +\end_inset + +. + Primero vemos que +\begin_inset Formula $\lim_{n}c_{n}=L\in\overline{\mathbb{R}}$ +\end_inset + + puede caracterizarse como que dados +\begin_inset Formula $\alpha<L<\beta$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\alpha<c_{n}<\beta$ +\end_inset + +, donde si +\begin_inset Formula $L=+\infty$ +\end_inset + + entonces +\begin_inset Formula $\beta$ +\end_inset + + está ausente y si +\begin_inset Formula $L=-\infty$ +\end_inset + + lo está +\begin_inset Formula $\alpha$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $\alpha<\frac{a}{b},\frac{c}{d}<\beta$ +\end_inset + + entonces +\begin_inset Formula $\alpha<\frac{a+c}{b+d}<\beta$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha<L<\beta$ +\end_inset + +, existe +\begin_inset Formula $n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + se tiene que +\begin_inset Formula $\alpha<\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}<\beta$ +\end_inset + + y +\begin_inset Formula $\alpha<\frac{a_{n+m}-a_{n+m-1}}{b_{n+m}-b_{n+m-1}}<\beta$ +\end_inset + +, luego sumando, +\begin_inset Formula $\alpha<\frac{a_{n+m}-a_{n}}{b_{n+m}-b_{n}}<\beta$ +\end_inset + +. + Como +\begin_inset Formula $\lim_{m}a_{n+m}=\lim_{m}b_{n+m}=0$ +\end_inset + +, entonces para todo +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\alpha\leq\frac{a_{n}}{b_{n}}\leq\beta$ +\end_inset + +, por lo que +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=L$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dados +\begin_inset Formula $\alpha<L<\beta$ +\end_inset + +, tomamos +\begin_inset Formula $\alpha<\alpha^{\prime}<L<\beta^{\prime}<\beta$ +\end_inset + +. + Procediendo como antes con +\begin_inset Formula $n=n_{0}$ +\end_inset + +, se tiene que +\begin_inset Formula $\alpha^{\prime}<\frac{\frac{a_{n_{0}+m}}{b_{n_{0}+m}}-\frac{a_{n_{0}}}{b_{n_{0}+m}}}{1-\frac{b_{n_{0}}}{b_{n_{0}+m}}}<\beta^{\prime}$ +\end_inset + +, de donde +\begin_inset Formula $\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\alpha^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}<\frac{a_{n_{0}+m}}{b_{n_{0}+m}}<\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\beta^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}$ +\end_inset + +, pero existe +\begin_inset Formula $m_{0}$ +\end_inset + + tal que si +\begin_inset Formula $m\geq m_{0}$ +\end_inset + + se tiene que +\begin_inset Formula $\alpha<\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\alpha^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}$ +\end_inset + + y +\begin_inset Formula $\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\beta^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}<\beta$ +\end_inset + + lo que, finalmente, establece que +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=L$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como consecuencia: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge, entonces +\begin_inset Formula +\[ +\lim_{n}\frac{a_{1}+\dots+a_{n}}{n}=\lim_{n}a_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge y +\begin_inset Formula $a_{n}>0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}\sqrt[n]{a_{1}\cdots a_{n}}=\lim_{n}a_{n} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $a=\lim_{n}(a_{n})_{n}$ +\end_inset + +. + Si +\begin_inset Formula $a\neq0$ +\end_inset + +, tomando logaritmos, +\begin_inset Formula +\[ +\lim_{n}\log(\sqrt[n]{a_{1}\cdots a_{n}})=\lim_{n}\frac{\log a_{1}+\dots+\log a_{n}}{n}=\lim_{n}\log a_{n}=\log a +\] + +\end_inset + +Si +\begin_inset Formula $a=0$ +\end_inset + +, sea +\begin_inset Formula $0<\varepsilon<1$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{0}$ +\end_inset + +, +\begin_inset Formula $a_{n}<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula +\[ +\sqrt[n]{a_{1}\cdots a_{n_{0}}a_{n_{0}+1}\cdots a_{n}}=\sqrt[n]{a_{1}\cdots a_{n_{0}}}\sqrt[n]{a_{n_{0}+1}\cdots a_{n}}\leq\sqrt[n]{M}\sqrt[n]{\varepsilon^{n-n_{0}}} +\] + +\end_inset + +con +\begin_inset Formula $M:=a_{1}\cdots a_{n_{0}}$ +\end_inset + +. + Si +\begin_inset Formula $\alpha_{n}:=\varepsilon\frac{n-n_{0}}{n}$ +\end_inset + +, +\begin_inset Formula $\lim_{n}\alpha_{n}=\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}\sqrt[n]{M}=1$ +\end_inset + +. + Existe +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $n_{1}>n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{1}$ +\end_inset + +, +\begin_inset Formula $|M^{\frac{1}{n}}-1|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $M^{\frac{1}{n}}<1+\varepsilon$ +\end_inset + +. + Como +\begin_inset Formula $\lim_{n}\alpha_{n}=\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{2}>n_{1}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{2}$ +\end_inset + +, +\begin_inset Formula $|\alpha_{n}-\varepsilon|<\frac{\varepsilon}{1+\varepsilon}$ +\end_inset + +, por lo que +\begin_inset Formula $\alpha_{n}<\varepsilon+\frac{\varepsilon}{1+\varepsilon}=\frac{\varepsilon^{2}+2\varepsilon}{1+\varepsilon}\leq\frac{3\varepsilon}{1+\varepsilon}$ +\end_inset + +, luego +\begin_inset Formula $\sqrt[n]{a_{1}\cdots a_{n}}\leq\sqrt[n]{M}\sqrt[n]{\varepsilon^{n-n_{0}}}\leq(1+\varepsilon)\frac{3\varepsilon}{1+\varepsilon}=3\varepsilon$ +\end_inset + +, lo que prueba que +\begin_inset Formula $\lim_{n}\sqrt[n]{a_{1}\cdots a_{n}}=0$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a_{n}>0$ +\end_inset + + y existe +\begin_inset Formula $\lim_{n}\frac{a_{n}}{a_{n-1}}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}\sqrt[n]{a_{n}}=\lim_{n}\frac{a_{n}}{a_{n-1}} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Se tiene que +\begin_inset Formula $\sqrt[n]{a_{n}}=\sqrt[n]{\frac{a_{1}}{1}\frac{a_{2}}{a_{1}}\cdots\frac{a_{n}}{a_{n-1}}}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $A_{n}:=\frac{a_{n}}{a_{n-1}}$ +\end_inset + +, para +\begin_inset Formula $n\geq2$ +\end_inset + + y +\begin_inset Formula $A_{1}=a_{1}$ +\end_inset + +, se obtiene que +\begin_inset Formula $\lim_{n}\sqrt[n]{a_{n}}=\lim_{n}\sqrt[n]{A_{1}\cdots A_{n}}=\lim_{n}A_{n}=\lim_{n}\frac{a_{n}}{a_{n-1}}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Series numéricas +\end_layout + +\begin_layout Standard +Dada una sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + de números reales, podemos formar una sucesión +\begin_inset Formula $(S_{n})_{n}$ +\end_inset + + dada por +\begin_inset Formula $S_{n}=\sum_{1\leq i\leq n}a_{i}$ +\end_inset + +, que llamamos +\series bold +serie +\series default + asociada de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +. + Sus términos se denominan +\series bold +sumas parciales +\series default + de la serie ( +\begin_inset Formula $S_{n}$ +\end_inset + + es la suma parcial +\begin_inset Formula $n$ +\end_inset + +-ésima), y los de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, términos de la serie (el término genérico +\begin_inset Formula $a_{n}$ +\end_inset + + se denomina +\series bold +término general +\series default +). + A +\begin_inset Formula $(S_{n})_{n}$ +\end_inset + + la denotamos como +\begin_inset Formula $a_{1}+\dots+a_{n}+\dots$ +\end_inset + + o +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. + Si +\begin_inset Formula $\lim_{n}S_{n}=S\in\mathbb{R}$ +\end_inset + +, la serie es +\series bold +convergente +\series default + y escribimos +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}=S$ +\end_inset + +. + De lo contrario es +\series bold +divergente +\series default +. +\end_layout + +\begin_layout Standard +La +\series bold +condición de Cauchy +\series default + nos dice que +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + es convergente si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall p,q\in\mathbb{N},(n_{0}\leq p\leq q\implies|a_{p+1}+\dots+a_{q}|<\varepsilon)$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + A partir de la condición de Cauchy para la existencia de límite y que +\begin_inset Formula $|S_{q}-S_{p}|=\left|\sum_{n=1}^{q}a_{n}-\sum_{n=1}^{p}a_{n}\right|=|a_{p+1}+\dots+a_{q}|$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +De aquí, tomando +\begin_inset Formula $q=p+1$ +\end_inset + +, se tiene que si +\begin_inset Formula $S_{n}$ +\end_inset + + converge, entonces +\begin_inset Formula $\lim_{n}a_{n}=0$ +\end_inset + +. + También se tiene que la convergencia de una serie no se altera modificando + un número finito de términos de esta. +\end_layout + +\begin_layout Standard + +\series bold +Linealidad de la suma: +\series default + Si +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}=A$ +\end_inset + + y +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}=B$ +\end_inset + +, entonces para +\begin_inset Formula $\lambda,\mu\in\mathbb{R}$ +\end_inset + +, se tiene que +\begin_inset Formula $\sum_{n=1}^{\infty}(\lambda a_{n}+\mu b_{n})=\lambda A+\mu B$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $S_{n}:=\lambda A_{n}+\mu B_{n}=\sum_{k=1}^{n}\lambda a_{n}+\sum_{k=1}^{n}\mu b_{n}=\sum_{k=1}^{n}(\lambda a_{n}+\mu b_{n})$ +\end_inset + +. + Aplicando las propiedades de límites, +\begin_inset Formula $\lim_{n}S_{n}=\lim_{n}(\lambda A_{n}+\mu B_{n})=\lambda A+\mu B$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dada una serie +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + de términos +\begin_inset Formula $a_{n}\geq0$ +\end_inset + +, esta es convergente si y sólo si la sucesión de sumas parciales es acotada, + pues esta es monótona creciente. +\end_layout + +\begin_layout Standard + +\series bold +Criterios de comparación: +\end_layout + +\begin_layout Enumerate +Dadas +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n},b_{n}\geq0$ +\end_inset + +, si existe +\begin_inset Formula $M>0$ +\end_inset + + tal que +\begin_inset Formula $a_{n}\leq Mb_{n}\forall n$ +\end_inset + +, entonces la convergencia de +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + +, pues significa que esta última es acotada. +\end_layout + +\begin_layout Enumerate +Dadas +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n},b_{n}>0$ +\end_inset + + y existe +\begin_inset Formula $l:=\lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $0<l<\infty$ +\end_inset + +, ambas series tienen el mismo carácter. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $\varepsilon=\frac{l}{2}>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\left|\frac{a_{n}}{b_{n}}-l\right|\leq\frac{l}{2}$ +\end_inset + +, lo que equivale a que +\begin_inset Formula $\frac{l}{2}\leq\frac{a_{n}}{b_{n}}\leq\frac{3}{2}l$ +\end_inset + + y +\begin_inset Formula $\frac{l}{2}b_{n}\leq a_{n}\leq\frac{3l}{2}b_{n}$ +\end_inset + +. + Si +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + es convergente, tenemos que +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + también, y si +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + es convergente, también lo es +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $l=0$ +\end_inset + + entonces la convergencia de +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $\varepsilon=1$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\frac{a_{n}}{b_{n}}\leq1$ +\end_inset + +, luego +\begin_inset Formula $a_{n}\leq b_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $l=+\infty$ +\end_inset + + entonces la convergencia de +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $k=1>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\frac{a_{n}}{b_{n}}\geq1$ +\end_inset + +, luego +\begin_inset Formula $a_{n}\geq b_{n}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Criterio de la raíz: +\series default + Dada +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}>0$ +\end_inset + + y +\begin_inset Formula $a:=\lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<1$ +\end_inset + +, la serie converge. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $r\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $a<r<1$ +\end_inset + +. + Existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\sqrt[n]{a_{n}}<r$ +\end_inset + +, es decir, +\begin_inset Formula $a_{n}<r^{n}$ +\end_inset + +. + Como +\begin_inset Formula $r<1$ +\end_inset + +, la serie geométrica +\begin_inset Formula $\sum_{n}r^{n}$ +\end_inset + + es convergente, y el criterio de comparación nos da la convergencia de + +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>1$ +\end_inset + +, la serie diverge. +\begin_inset Newline newline +\end_inset + +Existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $a_{n}>1$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}a_{n}\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a=1$ +\end_inset + + no se puede afirmar nada. +\end_layout + +\begin_layout Standard + +\series bold +Criterio del cociente: +\series default + Sea +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}>0$ +\end_inset + + y +\begin_inset Formula $a:=\lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$ +\end_inset + +. + Entonces +\begin_inset Formula $a=\lim_{n}\sqrt[n]{a_{n}}$ +\end_inset + +. + Por tanto: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<1$ +\end_inset + +, la serie converge. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>1$ +\end_inset + +, la serie diverge. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de condensación: +\series default + Dada una sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + monótona decreciente con +\begin_inset Formula $a_{n}>0$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +\sum_{n=1}^{\infty}a_{n}\in\mathbb{R}\iff\sum_{n=1}^{\infty}2^{n}a_{2^{n}}\in\mathbb{R} +\] + +\end_inset + + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A_{n}=\sum_{k=1}^{n}a_{k}$ +\end_inset + + y +\begin_inset Formula $B_{n}=\sum_{k=1}^{n}2^{k}a_{2^{k}}$ +\end_inset + +. + Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula +\begin{gather*} +\begin{array}{c} +B_{n}=2a_{2}+4a_{4}+\dots+2^{n}a_{2^{n}}=2(a_{2}+2a_{4}+\dots+2^{n-1}a_{2^{n}})\leq\\ +\leq2(a_{1}+a_{2}+(a_{3}+a_{4})+\dots+(a_{2^{n-1}+1}+\dots+a_{2^{n}}))=2(a_{1}+\dots+a_{2^{n}})=\\ +=2A_{2^{n}}=2(a_{1}+(a_{2}+a_{3})+(a_{4}+a_{5}+a_{6}+a_{7})+\dots+a_{2^{n}})\leq\\ +\leq2(a_{1}+2a_{2}+4a_{4}+\dots+2^{n-1}a_{2^{n-1}}+a_{2^{n}})=2B_{n-1}+a_{2^{n}} +\end{array} +\end{gather*} + +\end_inset + +Luego para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $B_{n}\leq2A_{2^{n}}\leq2B_{n-1}+a_{1}$ +\end_inset + +, luego si una de las dos está acotada la otra también. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una serie +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}\in\mathbb{R}$ +\end_inset + + es +\series bold +absolutamente convergente +\series default + si +\begin_inset Formula $\sum_{n}|a_{n}|$ +\end_inset + + es convergente. + Toda serie absolutamente convergente es convergente. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, por ser +\begin_inset Formula $\sum_{n}|a_{n}|$ +\end_inset + + convergente, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $p\geq q>n_{0}$ +\end_inset + +, +\begin_inset Formula $|a_{q+1}|+\dots+|a_{p}|<\varepsilon$ +\end_inset + +. + Pero +\begin_inset Formula $|a_{q+1}+\dots+a_{p}|\leq|a_{q+1}|+\dots+|a_{p}|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + cumple la condición de Cauchy y es pues convergente. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una serie es +\series bold +incondicionalmente convergente +\series default + si todas sus reordenadas son convergentes y tienen la misma suma. + +\series bold +Teorema: +\series default + Esta condición equivale a ser absolutamente convergente. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +La +\series bold +serie alternada +\series default + +\begin_inset Formula $\sum_{n}\frac{(-1)^{n+1}}{n}$ +\end_inset + + es convergente. + Además, si +\begin_inset Formula $S$ +\end_inset + + es la suma total y +\begin_inset Formula $S_{n}$ +\end_inset + + la suma parcial +\begin_inset Formula $n$ +\end_inset + +-ésima, +\begin_inset Formula $S_{2n}\leq S\leq S_{2n+1}$ +\end_inset + + y +\begin_inset Formula $|S_{n}-S|<\frac{1}{n+1}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $S_{2n}=\sum_{k=1}^{2n}\frac{(-1)^{k+1}}{k}\leq\sum_{k=1}^{2n}\frac{(-1)^{k+1}}{k}+\frac{1}{2n+1}=S_{2n+1}$ +\end_inset + +. + +\begin_inset Formula $S_{2n}\leq S_{2n}+\frac{1}{2n+1}-\frac{1}{2n+2}=S_{2n+2}$ +\end_inset + +, luego +\begin_inset Formula $(S_{2n})_{n}$ +\end_inset + + es creciente. + De forma análoga tenemos que +\begin_inset Formula $(S_{2n+1})_{n}$ +\end_inset + + es decreciente. + Definimos la sucesión de intervalos cerrados acotados y encajados +\begin_inset Formula $I_{n}:=[S_{2n},S_{2n+1}]$ +\end_inset + +. + Como +\begin_inset Formula $L(I_{n})=|S_{2n+1}-S_{2n}|=\frac{1}{2n+1}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}L(I_{n})=0$ +\end_inset + +, y por Cantor se tiene que existe un único +\begin_inset Formula $S=\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +, que es +\begin_inset Formula $S=\lim_{n}S_{2n}=\lim_{n}S_{2n+1}=\lim_{n}S_{n}$ +\end_inset + +. + Si +\begin_inset Formula $n=2k$ +\end_inset + +, +\begin_inset Formula $S_{2k}\leq S\leq S_{2k+1}$ +\end_inset + + y por tanto +\begin_inset Formula $|S-S_{2k}|<\frac{1}{2k+1}$ +\end_inset + +, y si +\begin_inset Formula $n=2k+1$ +\end_inset + +, +\begin_inset Formula $S_{2k+2}\leq S\leq S_{2k+1}$ +\end_inset + + y +\begin_inset Formula $|S-S_{2k+1}|\leq|S_{2k+1}-S_{2k+2}|\leq\frac{1}{2k+2}$ +\end_inset + +. + Esto prueba la segunda afirmación. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La +\series bold +serie geométrica +\series default + +\begin_inset Formula $\sum_{n=0}^{\infty}r^{n}$ +\end_inset + + es convergente si +\begin_inset Formula $|r|<1$ +\end_inset + + con suma +\begin_inset Formula $\frac{1}{1-r}$ +\end_inset + + y divergente si +\begin_inset Formula $|r|\geq1$ +\end_inset + +. + La +\series bold +serie armónica +\series default + +\begin_inset Formula $\sum_{n=1}^{\infty}\frac{1}{n^{k}}$ +\end_inset + + es convergente si +\begin_inset Formula $k>1$ +\end_inset + + y divergente si +\begin_inset Formula $k\leq1$ +\end_inset + +. +\end_layout + +\end_body +\end_document diff --git a/fuvr1/n3.lyx b/fuvr1/n3.lyx new file mode 100644 index 0000000..95517f3 --- /dev/null +++ b/fuvr1/n3.lyx @@ -0,0 +1,2202 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures false +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Límite de una función en un punto +\end_layout + +\begin_layout Standard +Una función es una terna +\begin_inset Formula $(D,F,f)$ +\end_inset + +, escrita como +\begin_inset Formula $f:D\rightarrow F$ +\end_inset + +, donde +\begin_inset Formula $f$ +\end_inset + + asigna a cada +\begin_inset Formula $x\in D$ +\end_inset + + un único valor +\begin_inset Formula $f(x)\in F$ +\end_inset + +. + Llamamos +\series bold +recta real ampliada +\series default + al conjunto +\begin_inset Formula $\overline{\mathbb{R}}:=\mathbb{R}\cup\{+\infty,-\infty\}$ +\end_inset + +. + +\begin_inset Formula $V$ +\end_inset + + es un +\series bold +entorno +\series default + de +\begin_inset Formula $x\in K$ +\end_inset + + si +\begin_inset Formula $\exists r>0:B(x,r)\subseteq V$ +\end_inset + +, y +\begin_inset Formula $x$ +\end_inset + + es un +\series bold +punto de acumulación +\series default + de +\begin_inset Formula $A\subseteq K$ +\end_inset + + si +\begin_inset Formula $\forall r>0,\exists x^{\prime}\neq x:x^{\prime}\in B(x,r)\cap A$ +\end_inset + +. + Se tiene entonces que +\begin_inset Formula $x$ +\end_inset + + es un punto de acumulación de +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + si y sólo si existe +\begin_inset Formula $(x_{n})_{n}\subseteq A$ +\end_inset + + con +\begin_inset Formula $x_{n}\neq x\forall n$ +\end_inset + + y +\begin_inset Formula $x=\lim_{n}x_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $B(x,\frac{1}{n})\cap A$ +\end_inset + + debe contener algún punto distinto de +\begin_inset Formula $x$ +\end_inset + +. + Si +\begin_inset Formula $x_{n}$ +\end_inset + + es uno de esos puntos, +\begin_inset Formula $\lim_{n}x_{n}=x$ +\end_inset + +, pues +\begin_inset Formula $|x_{n}-x|<\frac{1}{n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $r>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $|x_{n}-x|<r$ +\end_inset + +, es decir, +\begin_inset Formula $x_{n}\in B(x,r)$ +\end_inset + +, luego +\begin_inset Formula $x_{n}\in B(x,r)\cap A$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, +\begin_inset Formula $L$ +\end_inset + + es el límite de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula +\[ +\lim_{x\rightarrow c}f(x)=L +\] + +\end_inset + +si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(0<|x-c|<\delta\implies|f(x)-L|<\varepsilon)$ +\end_inset + +. + Dicho de otro modo, si +\begin_inset Formula $\forall B(L,\varepsilon),\exists B(c,\delta):f((B(c,\delta)\cap D)\backslash\{c\})\subseteq B(L,\varepsilon)$ +\end_inset + +. + Se tiene entonces que +\begin_inset Formula $L=\lim_{x\rightarrow c}f(x)\iff\forall(x_{n})_{n}\subseteq D,(\lim_{n}x_{n}=c\land\forall n\in\mathbb{N},x_{n}\neq c\implies L=\lim_{n}f(x_{n}))$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +La implicación directa se demuestra ayudándose de un esquema, y la inversa + se realiza por reducción al absurdo. +\end_layout + +\end_inset + + Si existe el límite de una función en un punto, este es único. +\end_layout + +\begin_layout Standard + +\series bold +Condición de Cauchy: +\series default + Dados +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, entonces +\begin_inset Formula $\exists\lim_{x\rightarrow c}f(x)\in K\iff\forall\varepsilon>0,\exists\delta>0:\forall x,y\in B(c,\delta)\backslash\{c\},|f(x)-f(y)|<\varepsilon$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $L:=\lim_{x\rightarrow c}f(x)$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que para +\begin_inset Formula $0\leq|x-c|<\delta$ +\end_inset + + (es decir, +\begin_inset Formula $x\in B(c,\delta)\backslash\{c\}$ +\end_inset + +), +\begin_inset Formula $|L-f(x)|<\frac{\varepsilon}{2}$ +\end_inset + +. + Análogamente, para +\begin_inset Formula $y\in B(c,\delta)\backslash\{c\}$ +\end_inset + +, +\begin_inset Formula $|L-f(y)|<\frac{\varepsilon}{2}$ +\end_inset + +, luego +\begin_inset Formula $|f(x)-f(y)|=|f(x)-L|+|L-f(y)|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, tomamos +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula $x,y\in B(c,\delta)\backslash\{c\}\implies|f(x)-f(y)|<\varepsilon$ +\end_inset + +. + Para +\begin_inset Formula $(x_{n})_{n}\subseteq D$ +\end_inset + + con +\begin_inset Formula $\lim_{n}x_{n}=c$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq c$ +\end_inset + +, existe +\begin_inset Formula $n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n,m>n_{0}$ +\end_inset + +, +\begin_inset Formula $x_{n},x_{m}\in B(c,\delta)\backslash\{c\}$ +\end_inset + +. + Pero entonces +\begin_inset Formula $|f(x_{n})-f(x_{m})|<\varepsilon$ +\end_inset + +, de modo que +\begin_inset Formula $(f(x_{n}))_{n}$ +\end_inset + + es de Cauchy y por tanto convergente, por lo que existe +\begin_inset Formula $L:=\lim_{n}f(x_{n})$ +\end_inset + + y solo queda probar que +\begin_inset Formula $L$ +\end_inset + + no depende de +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + +. + Dada +\begin_inset Formula $(x_{n}^{\prime})_{n}$ +\end_inset + + con +\begin_inset Formula $\lim_{n}x_{n}^{\prime}=c$ +\end_inset + +, +\begin_inset Formula $x_{n}^{\prime}\neq c$ +\end_inset + + y +\begin_inset Formula $L^{\prime}:=\lim_{n}f(x_{n}^{\prime})$ +\end_inset + + se tendría +\begin_inset Formula $|L-L^{\prime}|=|\lim_{n}f(x_{n})-\lim_{n}f(x_{n}^{\prime})|\leq\varepsilon$ +\end_inset + + para cualquier +\begin_inset Formula $\varepsilon$ +\end_inset + +, ya que al ser +\begin_inset Formula $\lim_{n}x_{n}=c=\lim_{n}x_{n}^{\prime}$ +\end_inset + +, se cumple para +\begin_inset Formula $n>n_{0}^{\prime}$ +\end_inset + + que +\begin_inset Formula $|x_{n}-x_{n}^{\prime}|<\delta$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tomando límites de sucesiones, podemos concluir que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall k\in\mathbb{N},\lim_{x\rightarrow c}x^{k}=c^{k}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall k\in\mathbb{N},\lim_{x\rightarrow c}\sqrt[k]{x}=\sqrt[k]{c}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}\sin x=\sin c$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Como +\begin_inset Formula $\forall x\in[0,\frac{\pi}{2}],\sin x\leq x\leq\tan x$ +\end_inset + +, +\begin_inset Formula $|\sin x-\sin c|=2\left|\sin\frac{x-c}{2}\cos\frac{x+c}{2}\right|\leq2\left|\frac{x-c}{2}\right|=|x-c|$ +\end_inset + +. + Por tanto para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, tomando +\begin_inset Formula $\delta=\varepsilon$ +\end_inset + +, se tiene que para +\begin_inset Formula $|x-c|<\delta$ +\end_inset + +, +\begin_inset Formula $|\sin x-\sin c|<\varepsilon$ +\end_inset + +. + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow0}\frac{\sin x}{x}=1$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}$ +\end_inset + +, y aplicando el teorema del sandwich, +\begin_inset Formula $\lim_{x\rightarrow0}\frac{x}{\sin x}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}e^{x}=e^{c}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $c\in(0,+\infty)$ +\end_inset + +, +\begin_inset Formula $\lim_{x\rightarrow c}\log x=\log c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $c\notin\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\lim_{x\rightarrow c}[x]=[c]$ +\end_inset + +. + Para +\begin_inset Formula $c\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\nexists\lim_{x\rightarrow c}[x]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\nexists\lim_{x\rightarrow0}\sin\frac{1}{x}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si fuera +\begin_inset Formula $L:=\lim_{x\rightarrow0}\sin\frac{1}{x}$ +\end_inset + +, se tendría que para toda +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + con +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq0$ +\end_inset + + que +\begin_inset Formula $\lim_{n}\sin\frac{1}{x_{n}}=L$ +\end_inset + +, pero las sucesiones +\begin_inset Formula $x_{n}^{\prime}=\frac{1}{n\pi}$ +\end_inset + + y +\begin_inset Formula $x_{n}^{\prime\prime}=\frac{1}{2n\pi+\frac{\pi}{2}}$ +\end_inset + + cumplen que +\begin_inset Formula $\lim_{n}x_{n}^{\prime}=\lim_{n}x_{n}^{\prime\prime}=0$ +\end_inset + +, pero +\begin_inset Formula $\lim_{n}\sin\frac{1}{x_{n}^{\prime}}=0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\sin\frac{1}{x_{n}^{\prime\prime}}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow0}x\sin\frac{1}{x}=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $|x\sin\frac{1}{x}-0|\leq|x|$ +\end_inset + +, por lo que tomando +\begin_inset Formula $\delta=\varepsilon$ +\end_inset + + se cumple la definición. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $f,g:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + + tales que +\begin_inset Formula $L_{1}=\lim_{x\rightarrow c}f(x)\in K$ +\end_inset + + y +\begin_inset Formula $L_{2}=\lim_{x\rightarrow c}g(x)\in K$ +\end_inset + +, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}f(x)+g(x)=L_{1}+L_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}f(x)g(x)=L_{1}L_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $L_{2}\neq0\implies\lim_{x\rightarrow c}\frac{f(x)}{g(x)}=\frac{L_{1}}{L_{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f(x)\leq g(x)\implies L_{1}\leq L_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Regla del sandwich: +\series default + Dada +\begin_inset Formula $h:D\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $f(x)\leq h(x)\leq g(x)$ +\end_inset + + y +\begin_inset Formula $L_{1}=L_{2}=L$ +\end_inset + + entonces +\begin_inset Formula $L=\lim_{x\rightarrow c}h(x)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Equivalencias importantes: +\begin_inset Formula +\[ +\lim_{x\rightarrow0}\frac{e^{x}-1}{x}=\lim_{x\rightarrow0}\frac{\log(1+x)}{x}=\lim_{x\rightarrow0}\frac{\sin x}{x}=\lim_{x\rightarrow0}\frac{1-\cos x}{\frac{x^{2}}{2}}=1 +\] + +\end_inset + + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Las tres primeras se siguen de las propiedades y equivalencias de sucesiones. + Para la cuarta, +\begin_inset Formula +\[ +\lim_{x\rightarrow0}\frac{1-\cos x}{\frac{x^{2}}{2}}=\lim_{x\rightarrow0}\frac{2}{1+\cos x}\frac{1-\cos^{2}x}{x^{2}}=\lim_{x\rightarrow0}\frac{2}{1+\cos x}\frac{\sin^{2}x}{x^{2}}=\frac{2}{1+1}\left(\lim_{x\rightarrow0}\frac{\sin x}{x}\right)^{2}=1 +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Límites laterales: +\series default + Dados +\begin_inset Formula $f:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, llamamos +\series bold +límite por la derecha +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + + a +\begin_inset Formula $f(c^{+})=\lim_{x\rightarrow c^{+}}f(x):=\lim_{x\rightarrow c}g(x)$ +\end_inset + + con +\begin_inset Formula $g:D\cap(c,+\infty)\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $g(x)=f(x)$ +\end_inset + +, y +\series bold +límite por la izquierda +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + + a +\begin_inset Formula $f(c^{-})=\lim_{x\rightarrow c^{-}}f(x):=\lim_{x\rightarrow c}g(x)$ +\end_inset + + con +\begin_inset Formula $g:D\cap(-\infty,c)\rightarrow\mathbb{R}$ +\end_inset + +. + Así, +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\lim_{x\rightarrow c^{+}}f(x)=L$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(c<x<c+\delta\implies|f(x)-L|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\lim_{x\rightarrow c^{-}}f(x)=L$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(c<x<c+\delta\implies|f(x)-L|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Por tanto, el límite de una función en un punto existe si y sólo si existen + los dos límites laterales y coinciden, en cuyo caso coinciden también con + el límite de la función en dicho punto. +\end_layout + +\begin_layout Standard + +\series bold +Límites infinitos y en el infinito: +\series default + Sea +\begin_inset Formula $f:(a,+\infty)\rightarrow\mathbb{R}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{x\rightarrow\infty}f(x)=l\in\mathbb{R}$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists M>0:\forall x\in(a,+\infty),(x>M\implies|f(x)-l|<\varepsilon)$ +\end_inset + +, y +\begin_inset Formula $\lim_{x\rightarrow\infty}f(x)=+\infty$ +\end_inset + + si +\begin_inset Formula $\forall K>0,\exists M>0:\forall x\in(a,+\infty),(x>M\implies f(x)>K)$ +\end_inset + +. + De igual modo, si +\begin_inset Formula $f:D\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + es un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{x\rightarrow c}f(x)=+\infty$ +\end_inset + + si +\begin_inset Formula $\forall K>0,\exists\delta>0:\forall x\in D,(0<|x-c|<\delta\implies f(x)>K)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Funciones continuas +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + es +\series bold +continua +\series default + en +\begin_inset Formula $c$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(|x-c|<\delta\implies|f(x)-f(c)|<\varepsilon)$ +\end_inset + +. + Así, +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + + si y sólo si para cada +\begin_inset Formula $(x_{n})_{n}\subseteq D$ +\end_inset + + con +\begin_inset Formula $c=\lim_{n}x_{n}$ +\end_inset + + se tiene que +\begin_inset Formula $f(c)=\lim_{n}f(x_{n})$ +\end_inset + +. + En particular, +\begin_inset Formula +\[ +f(\lim_{n}x_{n})=\lim_{n}f(x_{n}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dadas +\begin_inset Formula $f,g:D\subseteq K\rightarrow K$ +\end_inset + + continuas en +\begin_inset Formula $c\in D$ +\end_inset + +, entonces +\begin_inset Formula $f+g$ +\end_inset + + y +\begin_inset Formula $fg$ +\end_inset + + también son continuas en +\begin_inset Formula $c$ +\end_inset + +, y si +\begin_inset Formula $g(c)\neq0$ +\end_inset + +, también es continua +\begin_inset Formula $\frac{f}{g}$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $f:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + es continua en +\begin_inset Formula $c\in D$ +\end_inset + + y +\begin_inset Formula $f(c)\neq0$ +\end_inset + + entonces existe un +\begin_inset Formula $\delta>0$ +\end_inset + + tal que para +\begin_inset Formula $x\in B(c,\delta)\cap D$ +\end_inset + +, +\begin_inset Formula $f(x)\neq0$ +\end_inset + + y tiene el mismo signo que +\begin_inset Formula $f(c)$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $c$ +\end_inset + + es un punto aislado de +\begin_inset Formula $D$ +\end_inset + +, es obvio. + Sea entonces +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + + con +\begin_inset Formula $f(c)\neq0$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon=\frac{|f(c)|}{2}>0$ +\end_inset + +, por la continuidad de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + +, existirá un +\begin_inset Formula $\delta>0$ +\end_inset + + tal que para +\begin_inset Formula $x\in B(c,\delta)$ +\end_inset + +, +\begin_inset Formula $|f(x)-f(c)|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $f(c)-\varepsilon<f(x)<f(c)+\varepsilon$ +\end_inset + +. + Si +\begin_inset Formula $f(c)>0$ +\end_inset + +, entonces +\begin_inset Formula $f(x)>f(c)-\varepsilon=f(c)-\frac{|f(c)|}{2}=\frac{f(c)}{2}>0$ +\end_inset + +, mientras que si +\begin_inset Formula $f(c)<0$ +\end_inset + +, +\begin_inset Formula $f(x)<f(c)+\varepsilon=f(c)+\frac{|f(c)|}{2}=f(c)-\frac{f(c)}{2}=\frac{f(c)}{2}<0$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dadas +\begin_inset Formula $f_{1}:D_{1}\subseteq K\rightarrow D_{2}\subseteq K$ +\end_inset + + continua en +\begin_inset Formula $c\in D_{1}$ +\end_inset + + y +\begin_inset Formula $f_{2}:D_{2}\rightarrow K$ +\end_inset + + continua en +\begin_inset Formula $f_{1}(c)$ +\end_inset + +, entonces +\begin_inset Formula $f_{2}\circ f_{1}:D_{1}\rightarrow K$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +. +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $(x_{n})_{n}\subseteq D$ +\end_inset + + con +\begin_inset Formula $c=\lim_{n}x_{n}$ +\end_inset + +, por la continuidad de +\begin_inset Formula $f_{1}$ +\end_inset + +, +\begin_inset Formula $f_{1}(c)=\lim_{n}f_{1}(x_{n})$ +\end_inset + +, pero al ser +\begin_inset Formula $f_{2}$ +\end_inset + + continua en +\begin_inset Formula $f_{1}(c)$ +\end_inset + +, +\begin_inset Formula $f_{2}(f_{1}(c))=\lim_{n}f_{2}(f_{1}(x_{n}))$ +\end_inset + +, es decir, +\begin_inset Formula $(f_{2}\circ f_{1})(c)=\lim_{n}(f_{2}\circ f_{1})(x_{n})$ +\end_inset + + y por tanto +\begin_inset Formula $f_{2}\circ f_{1}$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + es +\series bold +continua en +\begin_inset Formula $D$ +\end_inset + + +\series default + si es continua en cada punto de +\begin_inset Formula $D$ +\end_inset + +. + Así, las funciones polinómicas, la exponencial, el seno y el coseno son + funciones continuas en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, mientras que el logaritmo es continuo en +\begin_inset Formula $(0,+\infty)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿Incluir las funciones de Dirichlet (3.2.7.8–9)? +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Funciones reales continuas en un intervalo +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Weierstrass +\series default + afirma que si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es continua, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es acotada. +\begin_inset Newline newline +\end_inset + +Si no lo fuera, para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existiría +\begin_inset Formula $x_{n}\in[a,b]$ +\end_inset + + tal que +\begin_inset Formula $|f(x_{n})|>n$ +\end_inset + +. + Por el teorema de Bolzano-Weierstrass, existe una subsucesión +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + de +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + convergente a un +\begin_inset Formula $c\in[a,b]$ +\end_inset + +. + Pero entonces, como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula $\lim_{n}f(x_{n_{k}})_{k}=f(c)$ +\end_inset + +, luego la sucesión es acotada. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existen +\begin_inset Formula $c,d\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c)\leq f(x)\leq f(d)$ +\end_inset + +, es decir, +\begin_inset Formula $f$ +\end_inset + + tiene máximo y mínimo. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $\alpha:=\sup\{f(x):x\in[a,b]\}$ +\end_inset + +, existe +\begin_inset Formula $(x_{n})_{n}\subseteq[a,b]$ +\end_inset + + con +\begin_inset Formula $\alpha=\lim_{n}f(x_{n})$ +\end_inset + +, por lo que existe una subsucesión +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + de +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + convergente a un +\begin_inset Formula $d\in[a,b]$ +\end_inset + +. + Pero por la continuidad de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $f(d)=\lim_{k}f(x_{n_{k}})=\alpha$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + alcanza su máximo absoluto en +\begin_inset Formula $d$ +\end_inset + +. + La demostración de que alcanza su mínimo absoluto es análoga. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Bolzano +\series default + afirma que si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es continua con +\begin_inset Formula $f(a)f(b)<0$ +\end_inset + +, entonces +\begin_inset Formula $\exists c\in(a,b):f(c)=0$ +\end_inset + +. + +\series bold +Demostración: +\series default + Supongamos +\begin_inset Formula $f(a)<0$ +\end_inset + + y +\begin_inset Formula $f(b)>0$ +\end_inset + + y sean +\begin_inset Formula $a_{0}:=a$ +\end_inset + +, +\begin_inset Formula $b_{0}:=b$ +\end_inset + + y +\begin_inset Formula $m:=\frac{a+b}{2}$ +\end_inset + +. + Si +\begin_inset Formula $f(m)=0$ +\end_inset + +, hemos terminado. + Si +\begin_inset Formula $f(m)>0$ +\end_inset + +, llamamos +\begin_inset Formula $a_{1}:=a_{0}$ +\end_inset + + y +\begin_inset Formula $b_{1}:=m$ +\end_inset + +, y si +\begin_inset Formula $f(m)<0$ +\end_inset + + entonces +\begin_inset Formula $a_{1}:=m$ +\end_inset + + y +\begin_inset Formula $b_{1}:=b_{0}$ +\end_inset + +. + Procediendo recursivamente, o bien se encuentra un cero de +\begin_inset Formula $f$ +\end_inset + +, o se obtiene una sucesión +\begin_inset Formula $[a_{n},b_{n}]$ +\end_inset + + de intervalos en las condiciones del principio de encaje de Cantor, por + lo que +\begin_inset Formula $\exists!c\in\bigcap_{n=1}^{\infty}[a_{n},b_{n}]$ +\end_inset + + y +\begin_inset Formula $c=\lim_{n}a_{n}=\lim_{n}b_{n}$ +\end_inset + +. + La continuidad de +\begin_inset Formula $f$ +\end_inset + + junto con que +\begin_inset Formula $f(a_{n})<0$ +\end_inset + + y +\begin_inset Formula $f(b_{n})>0$ +\end_inset + + implica que +\begin_inset Formula $0\leq\lim_{n}f(b_{n})=f(c)=\lim_{n}f(a_{n})\leq0$ +\end_inset + +, por lo que +\begin_inset Formula $f(c)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +método de bisección +\series default + para resolución de ecuaciones es un algoritmo para aproximar raíces de + una función continua, y consiste en localizar un intervalo +\begin_inset Formula $[a,b]$ +\end_inset + + con +\begin_inset Formula $f(a)f(b)<0$ +\end_inset + + y proceder según la demostración del teorema de Bolzano. +\end_layout + +\begin_layout Standard +La +\series bold +propiedad de Darboux +\series default + o +\series bold +de los valores intermedios +\series default + afirma que si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $f(a)<z<f(b)$ +\end_inset + +, entonces +\begin_inset Formula $\exists c\in[a,b]:f(c)=z$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $I$ +\end_inset + + es un intervalo de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es continua, entonces +\begin_inset Formula $f(I)$ +\end_inset + + es un intervalo, y si +\begin_inset Formula $I$ +\end_inset + + es además cerrado y acotado, también lo es +\begin_inset Formula $f(I)$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Necesitamos demostrar que dados +\begin_inset Formula $y_{1},y_{2}\in f(I)$ +\end_inset + + con +\begin_inset Formula $y_{1}<y_{2}$ +\end_inset + + y +\begin_inset Formula $y_{1}<z<y_{2}$ +\end_inset + +, +\begin_inset Formula $z\in f(I)$ +\end_inset + +, inmediato de la propiedad de los valores intermedios. + Entonces, si +\begin_inset Formula $I$ +\end_inset + + es cerrado y acotado, por el teorema de Weierstrass, +\begin_inset Formula $f$ +\end_inset + + tiene máximo +\begin_inset Formula $\alpha$ +\end_inset + + y mínimo +\begin_inset Formula $\beta$ +\end_inset + +, por lo que al ser un intervalo, +\begin_inset Formula $f(I)=[\alpha,\beta]$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es +\series bold +monótona creciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})\leq f(x_{2})$ +\end_inset + +, +\series bold +monótona decreciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})\geq f(x_{2})$ +\end_inset + +, +\series bold +monótona +\series default + si es monótona creciente o decreciente; +\series bold +estrictamente creciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})<f(x_{2})$ +\end_inset + +, +\series bold +estrictamente decreciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})>f(x_{2})$ +\end_inset + +, y +\series bold +estrictamente monótona +\series default + si es estrictamente creciente o decreciente. + Además, +\begin_inset Formula $f^{-1}:Y\rightarrow X$ +\end_inset + + es la inversa de +\begin_inset Formula $f:X\rightarrow Y$ +\end_inset + + si +\begin_inset Formula $f^{-1}\circ f=Id_{X}$ +\end_inset + + y +\begin_inset Formula $f\circ f^{-1}=Id_{Y}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la función inversa: +\series default + Dada +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + continua, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es inyectiva si y sólo si es estrictamente monótona. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Supongamos por reducción al absurdo que siendo +\begin_inset Formula $f$ +\end_inset + + inyectiva no fuera estrictamente monótona. + Entonces, para +\begin_inset Formula $x_{1}<x_{2}<x_{3}$ +\end_inset + +, +\begin_inset Formula $f(x_{1})$ +\end_inset + +, +\begin_inset Formula $f(x_{2})$ +\end_inset + + y +\begin_inset Formula $f(x_{3})$ +\end_inset + + son distintos dos a dos. + Si fuera +\begin_inset Formula $f$ +\end_inset + + estrictamente monótona se tendría que +\begin_inset Formula $f(x_{1})<f(x_{2})<f(x_{3})$ +\end_inset + + o +\begin_inset Formula $f(x_{1})>f(x_{2})>f(x_{3})$ +\end_inset + +, por lo que si no lo es, entonces +\begin_inset Formula $f(x_{1})<f(x_{2})>f(x_{3})$ +\end_inset + + o +\begin_inset Formula $f(x_{1})>f(x_{2})<f(x_{3})$ +\end_inset + +. + En el caso en que +\begin_inset Formula $f(x_{1})\leq f(x_{3})<f(x_{2})$ +\end_inset + +, por la propiedad de los valores intermedios, debe existir +\begin_inset Formula $c\in(x_{1},x_{2})$ +\end_inset + + con +\begin_inset Formula $f(c)=f(x_{3})$ +\end_inset + +. + Los otros tres casos son análogos. + Por tanto +\begin_inset Formula $f$ +\end_inset + + no es inyectiva. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $x_{1}<x_{2}$ +\end_inset + + no puede ser +\begin_inset Formula $f(x_{1})=f(x_{2})$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es estrictamente monótona, también lo es +\begin_inset Formula $f^{-1}$ +\end_inset + + que, además, es continua. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Al ser +\begin_inset Formula $f$ +\end_inset + + estrictamente monótona es inyectiva, y al ser +\begin_inset Formula $J:=f(I)$ +\end_inset + + un intervalo, existe la inversa +\begin_inset Formula $f^{-1}:J\rightarrow I$ +\end_inset + +, que también es una biyección estrictamente monótona. + Supongamos que es estrictamente creciente y sea +\begin_inset Formula $d\in J$ +\end_inset + + que no sea un extremo del intervalo. + Sea +\begin_inset Formula $c=f^{-1}(d)$ +\end_inset + + ( +\begin_inset Formula $f(c)=d$ +\end_inset + +), que por la monotonía no puede ser un extremo de +\begin_inset Formula $I$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, como +\begin_inset Formula $c$ +\end_inset + + no es un extremo, existe +\begin_inset Formula $0<\varepsilon^{\prime}<\varepsilon$ +\end_inset + + con +\begin_inset Formula $(c-\varepsilon^{\prime},c+\varepsilon^{\prime})\subseteq I$ +\end_inset + +, y por ser +\begin_inset Formula $f$ +\end_inset + + estrictamente creciente, +\begin_inset Formula $d:=f(c)\in(f(c-\varepsilon^{\prime}),f(c+\varepsilon^{\prime}))=f((c-\varepsilon^{\prime},c+\varepsilon^{\prime}))$ +\end_inset + +, por lo que existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que +\begin_inset Formula $B(d,\delta)\subseteq f((c-\varepsilon^{\prime},c+\varepsilon^{\prime}))$ +\end_inset + +, y por el crecimiento escrito de +\begin_inset Formula $f^{-1}$ +\end_inset + +, +\begin_inset Formula $f^{-1}(B(d,\delta))\subseteq(c-\varepsilon^{\prime},c+\varepsilon^{\prime})\subseteq(c-\varepsilon,c+\varepsilon)=B(c,\varepsilon)$ +\end_inset + +, lo que demuestra la continuidad de +\begin_inset Formula $f^{-1}$ +\end_inset + + salvo en los extremos. + En estos casos, si +\begin_inset Formula $d$ +\end_inset + + es un extremo de +\begin_inset Formula $J$ +\end_inset + + y +\begin_inset Formula $c:=f^{-1}(d)$ +\end_inset + + lo es por tanto de +\begin_inset Formula $I$ +\end_inset + +, es posible modificar ligeramente la prueba anterior para obtener el mismo + resultado. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:I\rightarrow J$ +\end_inset + + es biyectiva, entonces +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si es estrictamente monótona. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Contenido en el apartado anterior. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Por ser +\begin_inset Formula $f$ +\end_inset + + estrictamente monótona, existen +\begin_inset Formula $f(x_{0}^{-})$ +\end_inset + + y +\begin_inset Formula $f(x_{0}^{+})$ +\end_inset + + en cada +\begin_inset Formula $x_{0}\in I$ +\end_inset + +. + Si para algún +\begin_inset Formula $x_{0}$ +\end_inset + + fueran distintos (por ejemplo, +\begin_inset Formula $f(x_{0}^{-})<f(x_{0}^{+})$ +\end_inset + +, entonces los puntos de +\begin_inset Formula $(f(x_{0}^{-}),f(x_{0}^{+}))\subseteq J$ +\end_inset + + deberían tener preimagen, pero por la monotonía no la tienen, con lo que + +\begin_inset Formula $f$ +\end_inset + + no sería biyectiva. + Por tanto debe ser +\begin_inset Formula $f(x_{0}^{-})=f(x_{0}^{+})$ +\end_inset + + y la función es continua. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Continuidad uniforme +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + es +\series bold +uniformemente continua +\series default + en +\begin_inset Formula $D$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x,y\in D,(|x-y|<\delta\implies|f(x)-f(y)|<\varepsilon)$ +\end_inset + +. + El +\series bold +teorema de Heine +\series default + afirma que toda +\begin_inset Formula $f:B[a,r]\rightarrow K$ +\end_inset + + continua es uniformemente continua. + +\series bold +Demostración: +\series default + Si no lo fuera, existiría +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que +\begin_inset Formula $\forall\delta>0,\exists x,y\in D:(|x-y|<\delta\land|f(x)-f(y)|>\varepsilon)$ +\end_inset + +, por lo que existirían +\begin_inset Formula $(x_{n})_{n},(x_{n}^{\prime})_{n}\subseteq B[a,r]$ +\end_inset + + tales que +\begin_inset Formula $|x_{n}-x_{n}^{\prime}|<\frac{1}{n}$ +\end_inset + + y +\begin_inset Formula $|f(x_{n})-f(x_{n}^{\prime})|\geq\varepsilon$ +\end_inset + +. + Pero entonces existirían subsucesiones +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + y +\begin_inset Formula $(x_{n_{k}}^{\prime})_{k}$ +\end_inset + + de estas que convergen al mismo +\begin_inset Formula $z\in B[a,r]$ +\end_inset + +. + Por la continuidad de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $\lim_{k}f(x_{n_{k}})=f(z)=\lim_{k}f(x_{n_{k}}^{\prime})$ +\end_inset + +, pero por otra parte +\begin_inset Formula $|f(x_{n_{k}})-f(x_{n_{k}}^{\prime})|\geq\varepsilon>0$ +\end_inset + +. + Tomando límites, se tiene que +\begin_inset Formula $0\geq\varepsilon>0\#$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
