diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /fuvr2/n2.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'fuvr2/n2.lyx')
| -rw-r--r-- | fuvr2/n2.lyx | 3720 |
1 files changed, 3720 insertions, 0 deletions
diff --git a/fuvr2/n2.lyx b/fuvr2/n2.lyx new file mode 100644 index 0000000..9d5d103 --- /dev/null +++ b/fuvr2/n2.lyx @@ -0,0 +1,3720 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +partición +\series default + de +\begin_inset Formula $[a,b]$ +\end_inset + + es una colección de puntos +\begin_inset Formula $a=t_{0}<t_{1}<\dots<t_{n}=b$ +\end_inset + +, y llamamos +\begin_inset Formula ${\cal P}([a,b])$ +\end_inset + + al conjunto de todas las particiones de +\begin_inset Formula $[a,b]$ +\end_inset + +. + Dada +\begin_inset Formula $\pi\equiv(t_{0}<\dots<t_{n})\in{\cal P}([a,b])$ +\end_inset + +, escribimos +\begin_inset Formula $M_{i}:=\sup\{f(t)\}_{t\in[t_{i-1},t_{i}]}$ +\end_inset + + y +\begin_inset Formula $m_{i}:=\inf\{f(t)\}_{t\in[t_{i-1},t_{i}]}$ +\end_inset + +, y llamamos +\series bold +suma superior +\series default + y +\series bold +suma inferior +\series default + de +\begin_inset Formula $f$ +\end_inset + + correspondiente a +\begin_inset Formula $\pi$ +\end_inset + +, respectivamente, a +\begin_inset Formula +\begin{eqnarray*} +S(f,\pi):=\sum_{i=1}^{n}M_{i}(t_{i}-t_{i-1}) & \text{ y } & s(f,\pi):=\sum_{i=1}^{n}m_{i}(t_{i}-t_{i-1}) +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Obviamente +\begin_inset Formula $s(f,\pi)\leq S(f,\pi)$ +\end_inset + + para cualquier +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + +. + Dadas +\begin_inset Formula $\pi,\pi'\in{\cal P}([a,b])$ +\end_inset + +, decimos que +\begin_inset Formula $\pi'$ +\end_inset + + es +\series bold +más fina +\series default + que +\begin_inset Formula $\pi$ +\end_inset + + ( +\begin_inset Formula $\pi'\succ\pi$ +\end_inset + +) si +\begin_inset Formula $\pi'\supseteq\pi$ +\end_inset + +, y denotamos +\begin_inset Formula $\pi\lor\pi':=\pi\cup\pi'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\pi\preceq\pi'$ +\end_inset + + entonces +\begin_inset Formula $s(f,\pi)\leq s(f,\pi')$ +\end_inset + + y +\begin_inset Formula $S(f,\pi)\geq S(f,\pi')$ +\end_inset + +. + +\series bold +Demostración: +\series default + Supongamos que +\begin_inset Formula $\pi'$ +\end_inset + + tiene un punto más que +\begin_inset Formula $\pi$ +\end_inset + +, con +\begin_inset Formula $\pi\equiv t_{0}<\dots<t_{n}$ +\end_inset + + y +\begin_inset Formula $\pi'\equiv t_{0}<\dots<t_{k-1}<p<t_{k}<\dots<t_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $s(f,\pi)=\sum_{i\neq k}m_{i}(t_{i}-t_{i-1})+m_{k}(t_{k}-t_{k-1})=\sum_{i\neq k}m_{i}(t_{i}-t_{i-1})+m_{k}((t_{k}-p)+(p-t_{k-1}))\leq\sum_{i\neq k}m_{i}(t_{i}-t_{i-1})+\inf\{f(t)\}_{t\in[t_{k-1},p]}(p-t_{k-1})+\inf\{f(t)\}_{t\in[p,t_{k}]}(t_{k}-p)=s(f,\pi')$ +\end_inset + +. + La segunda afirmación se hace de forma análoga. +\end_layout + +\begin_layout Standard +Dadas +\begin_inset Formula $\pi,\pi'\in{\cal P}([a,b])$ +\end_inset + +, +\begin_inset Formula $s(f,\pi)\leq S(f,\pi')$ +\end_inset + +. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $\pi,\pi'\prec\pi\lor\pi'$ +\end_inset + +, entonces +\begin_inset Formula $s(f,\pi)\leq s(f,\pi\lor\pi')\leq S(f,\pi\lor\pi')\leq S(f,\pi')$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos pues +\series bold +integral inferior +\series default + e +\series bold +integral superior +\series default + ( +\series bold +de Darboux +\series default +), respectivamente, a +\begin_inset Formula +\begin{eqnarray*} +\underline{\int_{a}^{b}}f:=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])} & \text{ y } & \overline{\int_{a}^{b}}f:=\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])} +\end{eqnarray*} + +\end_inset + +Decimos que +\begin_inset Formula $f$ +\end_inset + + es +\series bold +integrable Riemann +\series default + en +\begin_inset Formula $[a,b]$ +\end_inset + +, escrito +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +, si las integrales superior e inferior coinciden y llamamos +\series bold +integral Riemann +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + +, escrito +\begin_inset Formula $\int_{a}^{b}f$ +\end_inset + +, a este valor. + Definimos, para +\begin_inset Formula $a<b$ +\end_inset + +, +\begin_inset Formula $\int_{b}^{a}f:=-\int_{a}^{b}f$ +\end_inset + +, e +\begin_inset Formula $\int_{a}^{a}f=0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Caracterización +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, dada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + acotada, +\begin_inset Formula $f\in{\cal R}[a,b]\iff\forall\varepsilon>0,\exists\pi\in{\cal P}([a,b]):S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, como +\begin_inset Formula $\int_{a}^{b}f=\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])}$ +\end_inset + +, existe +\begin_inset Formula $\pi_{1}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $0\leq S(f,\pi_{1})-\int_{a}^{b}f<\frac{\varepsilon}{2}$ +\end_inset + +, y análogamente existe +\begin_inset Formula $\pi_{2}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $0\leq\int_{a}^{b}f-s(f,\pi_{2})<\frac{\varepsilon}{2}$ +\end_inset + +. + Entonces +\begin_inset Formula $\pi:=\pi_{1}\lor\pi_{2}$ +\end_inset + + cumple ambas desigualdades, pues +\begin_inset Formula $S(f,\pi)\leq S(f,\pi_{1})$ +\end_inset + + y +\begin_inset Formula $s(f,\pi)\geq s(f,\pi_{2})$ +\end_inset + +, y sumándolas obtenemos +\begin_inset Formula $S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y +\begin_inset Formula $\pi_{\varepsilon}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi_{\varepsilon})-s(f,\pi_{\varepsilon})<\varepsilon$ +\end_inset + +, por la definición de integral superior e inferior, +\begin_inset Formula $0\leq\overline{\int_{a}^{b}}f-\underline{\int_{a}^{b}}f\leq S(f,\pi_{\varepsilon})-s(f,\pi_{\varepsilon})\leq\varepsilon$ +\end_inset + +, lo que para +\begin_inset Formula $\varepsilon$ +\end_inset + + arbitrario implica que las integrales superior e inferior coinciden. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f\in{\cal R}[a,b]\iff\exists!\alpha\in\mathbb{R}:\forall\pi\in{\cal P}([a,b]),s(f,\pi)\leq\alpha\leq S(f,\pi)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\alpha:=\int_{a}^{b}f$ +\end_inset + +, para toda +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + +, +\begin_inset Formula $s(f,\pi)\leq\alpha\leq S(f,\pi)$ +\end_inset + +. + Si existiera +\begin_inset Formula $\beta\neq\alpha$ +\end_inset + + que cumpliera la condición, como +\begin_inset Formula $\alpha=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])}$ +\end_inset + + se tendría +\begin_inset Formula $\beta>\alpha$ +\end_inset + +, pero análogamente que +\begin_inset Formula $\beta<\alpha$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Supongamos que existe un +\begin_inset Formula $\alpha$ +\end_inset + + que verifica la condición pero +\begin_inset Formula $f\notin{\cal R}[a,b]$ +\end_inset + +. + Entonces para cualquier +\begin_inset Formula $\pi\in{\cal R}[a,b]$ +\end_inset + + se tiene +\begin_inset Formula $s(f,\pi)\leq\underline{\int_{a}^{b}}f<\overline{\int_{a}^{b}}f\leq S(f,\pi)$ +\end_inset + +, por lo que existen infinitos números reales que verifican la condición + y por tanto +\begin_inset Formula $\alpha$ +\end_inset + + no es único. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Otro +\series bold +teorema +\series default +importante es que las funciones +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continuas son integrables en +\begin_inset Formula $[a,b]$ +\end_inset + +, y además, dados +\begin_inset Formula $z_{k,n}\in[a+\frac{b-a}{n}(k-1),a+\frac{b-a}{n}k]$ +\end_inset + + cualesquiera, +\begin_inset Formula +\[ +\lim_{n\rightarrow\infty}\frac{b-a}{n}\sum_{k=1}^{n}f(z_{k,n})=\int_{a}^{b}f +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + +, +\begin_inset Formula $S(f,\pi)-s(f,\pi)=\sum_{i=1}^{n}(M_{i}-m_{i})(t_{i}-t_{i-1})$ +\end_inset + +. + Ahora bien, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $[a,b]$ +\end_inset + + también es uniformemente continua, luego existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $|x-y|<\delta$ +\end_inset + + entonces +\begin_inset Formula $|f(x)-f(y)|<\frac{\varepsilon}{2(b-a)}$ +\end_inset + +. + Sea +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $\frac{b-a}{n_{0}}<\delta$ +\end_inset + +. + Para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + definimos +\begin_inset Formula $\pi_{n}=(a<a+\frac{b-a}{n}<\dots<a+n\frac{b-a}{n}=b)\in{\cal P}([a,b])$ +\end_inset + + y +\begin_inset Formula $t_{k,n}=a+k\frac{b-a}{n}$ +\end_inset + +, y tenemos que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + es +\begin_inset Formula $t_{k,n}-t_{k-1,n}<\delta$ +\end_inset + + y por tanto +\begin_inset Formula $M_{k,n}-m_{k,n}\leq\frac{\varepsilon}{2(b-a)}$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +S(f,\pi_{n_{0}})-s(f,\pi_{n_{0}})\leq\sum_{i=1}^{n_{0}}\frac{\varepsilon}{2(b-a)}(t_{i,n_{0}}-t_{i-1,n_{0}})=\frac{\varepsilon}{2}<\varepsilon +\] + +\end_inset + +De aquí que +\begin_inset Formula $f$ +\end_inset + + es integrable. + Pero entonces existe un único +\begin_inset Formula $\alpha=\int_{a}^{b}f$ +\end_inset + + tal que para +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + es +\begin_inset Formula $s(f,\pi)\leq\alpha\leq S(f,\pi)$ +\end_inset + +, y en particular, +\begin_inset Formula $s(f,\pi_{n})\leq\alpha\leq S(f,\pi_{n})$ +\end_inset + + para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. + Sea ahora +\begin_inset Formula $z_{k,n}\in[a+\frac{b-a}{n}(k-1),a+\frac{b-a}{n}k]$ +\end_inset + + para +\begin_inset Formula $1\leq k\leq n$ +\end_inset + + arbitrario y +\begin_inset Formula $a_{n}=\frac{b-a}{n}\sum_{k=1}^{n}f(z_{k,n})$ +\end_inset + +. + Por definición, +\begin_inset Formula $s(f,\pi_{n})\leq a_{n}\leq S(f,\pi_{n})$ +\end_inset + +, y dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $S(f,\pi_{n})-s(f,\pi_{n})<\frac{\varepsilon}{2}$ +\end_inset + +, de modo que +\begin_inset Formula $S(f,\pi_{n})-\alpha\leq\frac{\varepsilon}{2}$ +\end_inset + + y +\begin_inset Formula $S(f,\pi_{n})-a_{n}<\frac{\varepsilon}{2}$ +\end_inset + +, y entonces +\begin_inset Formula $|a_{n}-\alpha|\leq|a_{n}-S(f,\pi_{n})|+|S(f,\pi_{n})-\alpha|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + monótona y acotada entonces +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Dada +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + +, +\begin_inset Formula $S(f,\pi)-s(f,\pi)=\sum_{i=1}^{n}(M_{i}-m_{i})(t_{i}-t_{i-1})$ +\end_inset + +, y dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, si por ejemplo +\begin_inset Formula $f$ +\end_inset + + es monótona creciente y +\begin_inset Formula $f(a)<f(b)$ +\end_inset + +, dada +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $t_{i}-t_{i-1}<\frac{\varepsilon}{f(b)-f(a)}$ +\end_inset + +, se tiene que +\begin_inset Formula $M_{i}=f(t_{i})$ +\end_inset + +, +\begin_inset Formula $m_{i}=f(t_{i-1})$ +\end_inset + + y +\begin_inset Formula $S(f,\pi)-s(f,\pi)=\sum_{i=1}^{n}(M_{i}-m_{i})(t_{i}-t_{i-1})\leq\sum_{i=1}^{n}(M_{i}-m_{i})\frac{\varepsilon}{f(b)-f(a)}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es acotada y +\begin_inset Formula $f\in{\cal R}[c,b]\forall c>a$ +\end_inset + + entonces +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A>0$ +\end_inset + + con +\begin_inset Formula $|f(x)|\leq A\forall x\in[a,b]$ +\end_inset + +, entonces +\begin_inset Formula $-A\leq\inf\{f(x)\}_{x\in[a,b]}\leq\sup\{f(x)\}_{x\in[a,b]}\leq A$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $c\in(a,b]$ +\end_inset + + con +\begin_inset Formula $c-a<\frac{\varepsilon}{4A}$ +\end_inset + + y +\begin_inset Formula $\pi\in{\cal P}([c,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi)-s(f,\pi)<\frac{\varepsilon}{2}$ +\end_inset + +, si tomamos +\begin_inset Formula $\pi'\in{\cal P}([a,b])$ +\end_inset + + resultado de añadir a +\begin_inset Formula $\pi$ +\end_inset + + el intervalo +\begin_inset Formula $[a,c]$ +\end_inset + + con +\begin_inset Formula $M_{1}=\sup\{f(x)\}_{x\in[a,c]}$ +\end_inset + + y +\begin_inset Formula $m_{1}=\inf\{f(x)\}_{x\in[a,c]}$ +\end_inset + +, entonces +\begin_inset Formula $S(f,\pi')-s(f,\pi')=M_{1}(c-a)+S(f,\pi)-m_{1}(c-a)-s(f,\pi)\leq2A(c-a)+S(f,\pi)-s(f,\pi)\leq2A(c-a)+\frac{\varepsilon}{2}<2A\frac{\varepsilon}{4A}+\frac{\varepsilon}{2}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Section +Sumas de Riemann +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\pi\equiv(t_{0}<\dots<t_{n})\in{\cal P}([a,b])$ +\end_inset + +, llamamos +\series bold +suma de Riemann +\series default + asociada a la partición +\begin_inset Formula $\pi$ +\end_inset + + y los puntos +\begin_inset Formula $z_{i}\in[t_{i-1},t_{i}]$ +\end_inset + + a +\begin_inset Formula +\[ +S(f,\pi,z_{i}):=\sum_{i=1}^{n}f(z_{i})(t_{i}-t_{i-1}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f$ +\end_inset + + es integrable Riemann en +\begin_inset Formula $[a,b]$ +\end_inset + + si y sólo si existe +\begin_inset Formula $A\in\mathbb{R}$ +\end_inset + + tal que para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + tal que si +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + +, para cualesquiera +\begin_inset Formula $z_{i}\in[t_{i-1},t_{i}]$ +\end_inset + + se cumple +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + +, y entonces +\begin_inset Formula $A=\int_{a}^{b}f$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A=\int_{a}^{b}f$ +\end_inset + +, fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi_{0})-s(f,\pi_{0})<\varepsilon$ +\end_inset + +, si +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + + entonces +\begin_inset Formula $S(f,\pi)-s(f,\pi)\leq S(f,\pi_{0})-s(f,\pi_{0})<\varepsilon$ +\end_inset + +, +\begin_inset Formula $s(f,\pi)\leq S(f,\pi,z_{i})\leq S(f,\pi)$ +\end_inset + + y +\begin_inset Formula $s(f,\pi)\leq A\leq S(f,\pi)$ +\end_inset + +. + Pero esto implica que +\begin_inset Formula $0\leq A-s(f,\pi)\leq S(f,\pi)-s(f,\pi)\leq\varepsilon$ +\end_inset + +, +\begin_inset Formula $A-S(f,\pi,z_{i})\leq S(f,\pi)-s(f,\pi)\leq\varepsilon$ +\end_inset + + y +\begin_inset Formula $S(f,\pi,z_{i})-A\geq s(f,\pi)-S(f,\pi)\geq-\varepsilon$ +\end_inset + +, con lo que +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\frac{\varepsilon}{2}$ +\end_inset + + para puntos +\begin_inset Formula $z_{i}$ +\end_inset + + con +\begin_inset Formula $M_{i}-f(z_{i})<\frac{\varepsilon}{2(b-a)}$ +\end_inset + +, entonces +\begin_inset Formula $S(f,\pi)-S(f,\pi,z_{i})=\sum_{i=1}^{n}(M_{i}-f(z_{i}))(t_{i}-t_{i-1})\leq\sum_{i=1}^{n}\frac{\varepsilon}{2(b-a)}(t_{i}-t_{i-1})=\frac{\varepsilon}{2}$ +\end_inset + +, y como +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\frac{\varepsilon}{2}$ +\end_inset + + entonces +\begin_inset Formula $|A-S(f,\pi)|<\varepsilon$ +\end_inset + +. + Análogamente se tiene que +\begin_inset Formula $|A-s(f,\pi)|<\varepsilon$ +\end_inset + +. + Por tanto +\begin_inset Formula $|S(f,\pi)-s(f,\pi)|<2\varepsilon$ +\end_inset + + y +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Queda ver que +\begin_inset Formula $A=\int_{a}^{b}f$ +\end_inset + +. + Supongamos que existe +\begin_inset Formula $\pi_{0}$ +\end_inset + + con +\begin_inset Formula $s(f,\pi_{0})\leq S(f,\pi_{0})<A$ +\end_inset + +. + Sea +\begin_inset Formula $\varepsilon=A-S(f,\pi_{0})$ +\end_inset + +, existe por hipótesis +\begin_inset Formula $\pi_{1}$ +\end_inset + + tal que para +\begin_inset Formula $\pi\succ\pi_{1}$ +\end_inset + + y elección de +\begin_inset Formula $z_{i}$ +\end_inset + + se tiene +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\frac{\varepsilon}{2}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $\pi'=\pi_{0}\lor\pi_{1}$ +\end_inset + +, entonces +\begin_inset Formula $S(f,\pi',z_{i})>A-\frac{\varepsilon}{2}=\frac{A+S(f,\pi_{0})}{2}>S(f,\pi_{0})$ +\end_inset + +, pero al mismo tiempo +\begin_inset Formula $S(f,\pi',z_{i})<S(f,\pi')\leq S(f,\pi_{0})$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un conjunto +\begin_inset Formula $A\subseteq\mathbb{R}$ +\end_inset + + tiene +\series bold +medida cero +\series default + si para cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe una sucesión +\begin_inset Formula $I_{n}$ +\end_inset + + de intervalos cerrados y acotados con +\begin_inset Formula $A\subseteq\bigcup_{n}I_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n=1}^{\infty}\text{long}(I_{n})\leq\varepsilon$ +\end_inset + +, donde +\begin_inset Formula $\text{long}([a,b]):=b-a$ +\end_inset + +. + Si +\begin_inset Formula $A$ +\end_inset + + tiene medida cero y +\begin_inset Formula $B\subseteq A$ +\end_inset + + entonces +\begin_inset Formula $B$ +\end_inset + + tiene medida cero, y si +\begin_inset Formula $A$ +\end_inset + + es numerable tiene medida cero tomando, para cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, la sucesión con +\begin_inset Formula $I_{n}=\{x_{n}-\frac{\varepsilon}{2^{n+1}},x_{n}+\frac{\varepsilon}{2^{n+1}}\}$ +\end_inset + +, pues +\begin_inset Formula $\sum_{n}\text{long}(I_{n})=\sum_{n}\frac{\varepsilon}{2^{n}}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Lebesgue +\series default + afirma que dada una función acotada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + +, si +\begin_inset Formula $D(f)\subseteq[a,b]$ +\end_inset + + es el conjunto de puntos en los que +\begin_inset Formula $f$ +\end_inset + + no es continua, entonces +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + si y sólo si +\begin_inset Formula $D(f)$ +\end_inset + + tiene medida cero. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\pi=(t_{0}<\dots<t_{n})\in{\cal P}([a,b])$ +\end_inset + +, llamamos +\series bold +norma +\series default + de +\begin_inset Formula $\pi$ +\end_inset + + a +\begin_inset Formula $\Vert\pi\Vert:=\max\{t_{i}-t_{i-1}\}_{1\leq i\leq n}$ +\end_inset + +. + Como +\series bold +teorema +\series default +, +\series bold + +\series default +si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es acotada, son equivalentes: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $A=\int_{a}^{b}f$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists A\in\mathbb{R}:\forall\varepsilon>0,\exists\pi_{0}\in{\cal P}([a,b]):\forall\pi\succ\pi_{0},|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + + para cualquier suma de Riemann correspondiente a +\begin_inset Formula $\pi$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists A\in\mathbb{R}:\forall\varepsilon>0,\exists\delta>0:\forall\pi:\Vert\pi\Vert<\delta,|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + + para cualquier suma de Riemann correspondiente a +\begin_inset Formula $\pi$ +\end_inset + +. +\end_layout + +\begin_layout Section +Propiedades +\end_layout + +\begin_layout Description +Linealidad +\begin_inset Formula ${\cal R}[a,b]$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial y el operador +\begin_inset Formula $\int_{a}^{b}$ +\end_inset + + es lineal. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $f,g\in{\cal R}[a,b]$ +\end_inset + +, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + tal que para +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + + se tienen +\begin_inset Formula $\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|,\left|\int_{a}^{b}g-S(g,\pi,z_{i})\right|<\frac{\varepsilon}{2}$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\left|\int_{a}^{b}f+\int_{a}^{b}g-S(f+g,\pi,z_{i})\right|<\varepsilon +\] + +\end_inset + +con lo que +\begin_inset Formula $\int_{a}^{b}(f+g)=\int_{a}^{b}f+\int_{a}^{b}g$ +\end_inset + +. + Sea ahora +\begin_inset Formula $k\in\mathbb{R}$ +\end_inset + +, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + tal que para +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + + se cumple +\begin_inset Formula $\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|<\frac{\varepsilon}{1+|k|}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\left|k\int_{a}^{b}f-S(kf,\pi,z_{i})\right|=|k|\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|<|k|\frac{\varepsilon}{1+|k|}<\varepsilon +\] + +\end_inset + +luego +\begin_inset Formula $\int_{a}^{b}kf=k\int_{a}^{b}f$ +\end_inset + +. +\end_layout + +\begin_layout Description +Producto Si +\begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + son integrables Riemann, también lo es +\begin_inset Formula $fg$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Por el teorema de Lebesgue, si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +, tendrá medida cero, pero +\begin_inset Formula $D(f^{2})\subseteq D(f)$ +\end_inset + +, pues si +\begin_inset Formula $f$ +\end_inset + + es continua en un punto también lo es +\begin_inset Formula $f^{2}$ +\end_inset + +. + Entonces +\begin_inset Formula $D(f^{2})$ +\end_inset + + tiene medida cero, lo que nos da la integrabilidad de +\begin_inset Formula $f^{2}$ +\end_inset + +. + El caso general se sigue de que +\begin_inset Formula $fg=\frac{1}{2}\left((f+g)^{2}-f^{2}-g^{2}\right)$ +\end_inset + + por la linealidad. +\end_layout + +\begin_layout Description +Monotonía Si +\begin_inset Formula $f(x)\leq g(x)$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + + entonces +\begin_inset Formula $\int_{a}^{b}f\leq\int_{a}^{b}g$ +\end_inset + +, y en particular si +\begin_inset Formula $m\leq f(x)\leq M$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, entonces +\begin_inset Formula $m(b-a)\leq\int_{a}^{b}f\leq M(b-a)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + se tiene +\begin_inset Formula $s(f,\pi)\leq s(g,\pi)$ +\end_inset + +, y tomando supremos, +\begin_inset Formula $\int_{a}^{b}f\leq\int_{a}^{b}g$ +\end_inset + +. +\end_layout + +\begin_layout Description +Valor +\begin_inset space ~ +\end_inset + +medio Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua, existe +\begin_inset Formula $c\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c)=\frac{1}{b-a}\int_{a}^{b}f$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Por el teorema de Weierstrass, existen +\begin_inset Formula $c_{1},c_{2}\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c_{1})\leq f(x)\leq f(c_{2})$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, y por la monotonía de la integral, +\begin_inset Formula $f(c_{1})\leq\frac{1}{b-a}\int_{a}^{b}f\leq f(c_{2})$ +\end_inset + +. + Entonces, aplicando la propiedad de los valores intermedios, existe +\begin_inset Formula $c\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c)=\frac{1}{b-a}\int_{a}^{b}f$ +\end_inset + +. +\end_layout + +\begin_layout Description +Valor +\begin_inset space ~ +\end_inset + +absoluto Si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + entonces +\begin_inset Formula $|f|\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $\left|\int_{a}^{b}f\right|\leq\int_{a}^{b}|f|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +, si +\begin_inset Formula $M'_{i}$ +\end_inset + + y +\begin_inset Formula $m'_{i}$ +\end_inset + + son el supremo y el ínfimo, respectivamente, de +\begin_inset Formula $|f|$ +\end_inset + + en +\begin_inset Formula $[t_{i-1},t_{i}]$ +\end_inset + +, y +\begin_inset Formula $M_{i}$ +\end_inset + + y +\begin_inset Formula $m_{i}$ +\end_inset + + son los de +\begin_inset Formula $f$ +\end_inset + +, entonces para +\begin_inset Formula $z,w\in[t_{i-1},t_{i}]$ +\end_inset + + se tiene que +\begin_inset Formula $||f(z)|-|f(w)||\leq|f(z)-f(w)|\leq M_{i}-m_{i}$ +\end_inset + +, por lo que +\begin_inset Formula $\sup\{|f(z)|-|f(w)|\}_{z,w\in[t_{i-1},t_{i}]}=M'_{i}-m'_{i}\leq M_{i}-m_{i}$ +\end_inset + + y entonces +\begin_inset Formula $S(|f|,\pi)-s(|f|,\pi)\leq S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +, con lo que +\begin_inset Formula $|f|\in{\cal R}[a,b]$ +\end_inset + +. + Ahora bien, +\begin_inset Formula $-|f(x)|\leq f(x)\leq|f(x)|$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, con lo que +\begin_inset Formula $\int_{a}^{b}-|f|=-\int_{a}^{b}|f|\leq\int_{a}^{b}f\leq\int_{a}^{b}|f|$ +\end_inset + +. +\end_layout + +\begin_layout Description +Aditividad +\begin_inset space ~ +\end_inset + +respecto +\begin_inset space ~ +\end_inset + +de +\begin_inset space ~ +\end_inset + +intervalo Dada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + acotada y +\begin_inset Formula $c\in[a,b]$ +\end_inset + +, +\begin_inset Formula $f\in{\cal R}[a,b]\iff f\in{\cal R}[a,c],{\cal R}[c,b]$ +\end_inset + +, y además +\begin_inset Formula $\int_{a}^{b}f=\int_{a}^{c}f+\int_{c}^{b}f$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Basta refinar una partición +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + añadiéndole el punto +\begin_inset Formula $c$ +\end_inset + +. +\end_layout + +\begin_layout Description +Discontinuidades Si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + coincide con +\begin_inset Formula $f$ +\end_inset + + salvo en un número finito de puntos, entonces +\begin_inset Formula $g\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $\int_{a}^{b}f=\int_{a}^{b}g$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Supongamos que cambian en un punto +\begin_inset Formula $c\in[a,b]$ +\end_inset + +, y basta probar que +\begin_inset Formula $h:=g-f$ +\end_inset + + es integrable. + Ahora bien, +\begin_inset Formula $h$ +\end_inset + + es nula en todos los puntos salvo en +\begin_inset Formula $c$ +\end_inset + +, por lo que dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + podemos tomar +\begin_inset Formula $\pi\in{\cal P}[a,b]$ +\end_inset + + con +\begin_inset Formula $t_{i}-t_{i-1}\leq\frac{\varepsilon}{h(c)}$ +\end_inset + + y entonces +\begin_inset Formula $S(f,\pi,z_{i})\leq\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Section +El Teorema Fundamental del Cálculo +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +, llamamos +\series bold +integral indefinida +\series default + de +\begin_inset Formula $f$ +\end_inset + + a la función +\begin_inset Formula $F:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $F(x):=\int_{a}^{x}f$ +\end_inset + +. + El +\series bold +TEOREMA FUNDAMENTAL DEL CÁLCULO +\series default + afirma que, si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + es su integral indefinida, entonces +\begin_inset Formula $F$ +\end_inset + + es continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c\in(a,b)$ +\end_inset + + entonces +\begin_inset Formula $F$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Formula $F'(c)=f(c)$ +\end_inset + +, y esto también ocurre con los extremos del intervalo y las correspondientes + derivadas laterales. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $M:=\sup\{|f(x)|\}_{x\in[a,b]}$ +\end_inset + +, por las propiedades de la integral, +\begin_inset Formula $|F(x)-F(y)|=\left|\int_{x}^{y}f\right|\leq M|x-y|$ +\end_inset + +, por lo que +\begin_inset Formula $F$ +\end_inset + + es uniformemente continua en +\begin_inset Formula $[a,b]$ +\end_inset + +, pues dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y +\begin_inset Formula $\delta=\frac{\varepsilon}{M}$ +\end_inset + +, si +\begin_inset Formula $|x-y|\leq\delta$ +\end_inset + + entonces +\begin_inset Formula $|F(x)-F(y)|\leq\varepsilon$ +\end_inset + +. + Supongamos ahora que +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c\in(a,b)$ +\end_inset + +. + Sea +\begin_inset Formula $h>0$ +\end_inset + + con +\begin_inset Formula $c+h\in[a,b]$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\left|\frac{F(c+h)-F(c)}{h}-f(c)\right|=\left|\frac{\int_{a}^{c+h}f-\int_{a}^{c}f}{h}-\frac{1}{h}\int_{c}^{c+h}f(c)\right|=\left|\frac{1}{h}\int_{c}^{c+h}(f-f(c))\right|\leq\\ +\leq\frac{1}{h}\sup\{|f(t)-f(c)|\}_{t\in[c,c+h]}|h|=\sup\{|f(t)-f(c)|\}_{t\in[c,c+h]} +\end{multline*} + +\end_inset + +y como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +, el último miembro de la desigualdad tiende a 0 cuando +\begin_inset Formula $h$ +\end_inset + + tiende a 0, y lo mismo ocurre para +\begin_inset Formula $h<0$ +\end_inset + +. + Por tanto +\begin_inset Formula $F'(c)=\lim_{h\rightarrow0}\frac{F(c+h)-F(c)}{h}=f(c)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + +, decimos que +\begin_inset Formula $g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es una +\series bold +primitiva +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + si +\begin_inset Formula $g$ +\end_inset + + es derivable en +\begin_inset Formula $(a,b)$ +\end_inset + + y para todo +\begin_inset Formula $x\in(a,b)$ +\end_inset + + se tiene +\begin_inset Formula $g'(x)=f(x)$ +\end_inset + +. + Por el teorema fundamental del cálculo, toda +\begin_inset Formula $f$ +\end_inset + + continua en +\begin_inset Formula $[a,b]$ +\end_inset + + tiene primitivas en +\begin_inset Formula $[a,b]$ +\end_inset + +, donde la integral indefinida es una de ellas y el resto se obtienen sumando + a esta una constante. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $F$ +\end_inset + + es la integral indefinida de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + es otra primitiva de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + +, entonces +\begin_inset Formula $(F-g)'(x)=F'(x)-g'(x)=f(x)-f(x)=0$ +\end_inset + + para +\begin_inset Formula $x\in(a,b)$ +\end_inset + +, y por el teorema del valor medio, +\begin_inset Formula $F-g$ +\end_inset + + es constante. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, la +\series bold +fórmula de Barrow +\series default + afirma que si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + admite una primitiva +\begin_inset Formula $g$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + entonces +\begin_inset Formula $\int_{a}^{b}f=g(b)-g(a)$ +\end_inset + +. + +\series bold +Demostración: +\series default +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $\pi\equiv(t_{0}<\dots<t_{n})\in{\cal P}([a,b])$ +\end_inset + + tal que para cualesquiera +\begin_inset Formula $z_{i}\in[t_{i-1},t_{i}]$ +\end_inset + +, +\begin_inset Formula $\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|<\varepsilon$ +\end_inset + +. + Por el teorema del valor medio aplicado a +\begin_inset Formula $g$ +\end_inset + + en +\begin_inset Formula $[t_{i-1},t_{i}]$ +\end_inset + +, existe +\begin_inset Formula $z_{i}\in[t_{i-1},t_{i}]$ +\end_inset + + con +\begin_inset Formula $g(t_{i})-g(t_{i-1})=g'(z_{i})(t_{i}-t_{i-1})=f(z_{i})(t_{i}-t_{i-1})$ +\end_inset + +, luego +\begin_inset Formula $g(b)-g(a)=\sum_{i=1}^{n}(g(t_{i})-g(t_{i-1}))=\sum_{i=1}^{n}g'(z_{i})(t_{i}-t_{i-1})=S(f,\pi,z_{i})$ +\end_inset + +. + Por tanto +\begin_inset Formula $\left|\int_{a}^{b}f-(g(b)-g(a))\right|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Section +Cálculo de primitivas +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int u^{n}u'\,dx=\frac{u^{n+1}}{n+1}+C\forall n\neq-1$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{u}dx=\ln|u|+C\forall u\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int e^{u}u'\,dx=e^{u}+C$ +\end_inset + +; +\begin_inset Formula $\int a^{u}u'\,dx=\frac{a^{u}}{\ln a}+C\forall a>0,a\neq1$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\cos u\,u'\,dx=\sin u+C$ +\end_inset + +; +\begin_inset Formula $\int\sin u\,u'\,dx=-\cos u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\cosh u\,u'\,dx=\sinh u+C$ +\end_inset + +; +\begin_inset Formula $\int\sinh u\,u'\,dx=\cosh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sin^{2}u}dx=\int\frac{u'}{\sinh^{2}u}dx=-\cot u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{\cos^{2}u}dx=\int\frac{u'}{\cosh^{2}u}dx=\tan u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{1+u^{2}}dx=\arctan u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{1-u^{2}}dx=\arg\tanh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sqrt{1-u^{2}}}dx=\arcsin u+C=-\arccos u+C'$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}+1}}dx=\arg\sinh u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}-1}}dx=\arg\cosh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray*} +\cosh(x)=\frac{e^{x}+e^{-x}}{2} & \sinh(x)=\frac{e^{x}-e^{-x}}{2} & \cosh^{2}(x)-\sinh^{2}(x)=1\\ +\arg\cosh(x)=\ln(x+\sqrt{x^{2}-1}) & \arg\sinh(x)=\ln(x+\sqrt{x^{2}+1}) & \arg\tanh(x)=\frac{1}{2}\ln\frac{1+x}{1-x} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Subsection +Integración por partes +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g\in{\cal R}[a,b]$ +\end_inset + + con primitivas respectivas +\begin_inset Formula $F$ +\end_inset + + y +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{a}^{b}Fg=F(b)G(b)-F(a)G(a)-\int_{a}^{b}fG +\] + +\end_inset + +lo que suele escribirse como +\begin_inset Formula $\int u\,dv=uv-\int v\,du$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $(FG)'(x)=F'(x)G(x)+F(x)G'(x)=f(x)G(x)+F(x)g(x)$ +\end_inset + +, y por la fórmula de Barrow, +\begin_inset Formula $\int_{a}^{b}Fg+\int_{a}^{b}fG=\int_{a}^{b}(Fg+fG)=F(b)G(b)-F(a)G(a)$ +\end_inset + +, luego +\begin_inset Formula $\int_{a}^{b}Fg=F(b)G(b)-F(a)G(a)-\int_{a}^{b}fG$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Cambio de variable +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $\varphi:[c,d]\rightarrow[a,b]\in{\cal C}^{1}[c,d]$ +\end_inset + + con +\begin_inset Formula $\varphi(c)=a$ +\end_inset + + y +\begin_inset Formula $\varphi(d)=b$ +\end_inset + +, sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua, entonces +\begin_inset Formula +\[ +\int_{a}^{b}f=\int_{c}^{d}(f\circ\varphi)\varphi' +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $F$ +\end_inset + + es una primitiva de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + entonces +\begin_inset Formula $F\circ\varphi$ +\end_inset + + lo es de +\begin_inset Formula $(f\circ\varphi)\varphi'$ +\end_inset + + en +\begin_inset Formula $[c,d]$ +\end_inset + +, luego +\begin_inset Formula $\int_{a}^{b}f=F(b)-F(a)=F(\varphi(d))-F(\varphi(c))=(F\circ\varphi)(d)-(F\circ\varphi)(c)=\int_{c}^{d}(f\circ\varphi)\varphi'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Esto da sentido a la notación de +\begin_inset Formula $\int_{a}^{b}f(x)dx:=\int_{a}^{b}f$ +\end_inset + +, porque entonces si +\begin_inset Formula $x=\varphi(t)$ +\end_inset + + es fácil recordar +\begin_inset Formula $dx=\varphi'(t)dt$ +\end_inset + + y entonces +\begin_inset Formula +\[ +\int_{a}^{b}f(x)dx=\int_{c}^{d}f(\varphi(t))\varphi'(t)dt +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Funciones racionales +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $P(x)$ +\end_inset + + y +\begin_inset Formula $Q(x)$ +\end_inset + + polinomios y queremos resolver +\begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx$ +\end_inset + +. + Si el grado de +\begin_inset Formula $P(x)$ +\end_inset + + es mayor o igual que el de +\begin_inset Formula $Q(x)$ +\end_inset + + hacemos +\begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx=\int C(x)dx+\int\frac{R(x)}{Q(x)}dx$ +\end_inset + + para que el grado del numerador sea menor que el del denominador. + Entonces descomponemos en fracciones simples. +\end_layout + +\begin_layout Standard +Descomponemos +\begin_inset Formula $Q(x)$ +\end_inset + + como +\begin_inset Formula $Q(x)=\prod_{i=1}^{r}(x-a_{i})^{m_{i}}\prod_{i=1}^{s}(x^{2}+p_{i}x+q_{i})^{n_{i}}$ +\end_inset + +, donde +\begin_inset Formula $q_{i}>\frac{p_{i}^{2}}{4}$ +\end_inset + + para que los factores sean irreducibles. + Entonces (si el grado de +\begin_inset Formula $P(x)$ +\end_inset + + es menor que el de +\begin_inset Formula $Q(x)$ +\end_inset + +) podemos expresar la fracción como +\begin_inset Formula +\[ +\frac{P(x)}{Q(x)}=\sum_{i=1}^{r}\sum_{j=1}^{m_{i}}\frac{A_{ij}}{(x-a_{i})^{j}}+\sum_{i=1}^{M}\sum_{j=1}^{n_{i}}\frac{M_{ij}x+N_{ij}}{(x^{2}+p_{i}x+q_{i})^{j}} +\] + +\end_inset + +Resolvemos los +\begin_inset Formula $A_{k,i}$ +\end_inset + +, +\begin_inset Formula $M_{k,i}$ +\end_inset + +, +\begin_inset Formula $N_{k,i}$ +\end_inset + + y nos queda hallar la integral de cada sumando como sigue: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{A}{x-a}dx=A\ln|x-a|+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{A}{(x-a)^{n}}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C$ +\end_inset + +, donde +\begin_inset Formula $n\in2,3,\dots$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{Mx+N}{x^{2}+px+q}dx=\frac{M}{2}\ln\left(\left(x+\frac{p}{2}\right)^{2}+c^{2}\right)+\frac{N-\frac{Mp}{2}}{c}\arctan\left(\frac{x+\frac{p}{2}}{c}\right)+C$ +\end_inset + +, donde +\begin_inset Formula $c=\frac{\sqrt{4q-p^{2}}}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Funciones que contienen +\begin_inset Formula $\cos x$ +\end_inset + + y +\begin_inset Formula $\sin x$ +\end_inset + + +\end_layout + +\begin_layout Standard +En general, haremos +\begin_inset Formula $t=\tan\frac{x}{2}$ +\end_inset + + y entonces +\begin_inset Formula +\begin{eqnarray*} +\cos x=\frac{\cos(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{\cos^{2}\frac{x}{2}-\sin^{2}\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{1-\tan^{2}\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{1-t^{2}}{1+t^{2}}\\ +\sin x=\frac{\sin(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{2\tan\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{2t}{1+t^{2}}\\ +x=2\arctan t & \text{ y } & dx=\frac{2}{1+t^{2}}dt +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Si la función es de la forma +\begin_inset Formula $f(x)=g(\sin x)\cos x$ +\end_inset + +, siendo +\begin_inset Formula $g$ +\end_inset + + una función racional, hacemos +\begin_inset Formula $t=\sin x$ +\end_inset + +, y si es +\begin_inset Formula $f(x)=g(\cos x)\sin x$ +\end_inset + + hacemos +\begin_inset Formula $t=\cos x$ +\end_inset + +. + Si es +\begin_inset Formula $f(x)=g(\tan x)$ +\end_inset + + hacemos +\begin_inset Formula $\tan x=t$ +\end_inset + +, y podemos llegar a esta situación cuando al sustituir +\begin_inset Formula $\sin x$ +\end_inset + + por +\begin_inset Formula $\cos x\tan x$ +\end_inset + + quedan solo potencias pares de +\begin_inset Formula $\cos x$ +\end_inset + +, y hacemos +\begin_inset Formula $\cos^{2}x=\frac{1}{1+\tan^{2}x}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En el caso +\begin_inset Formula $f(x)=\cos^{n}x\sin^{m}x$ +\end_inset + +, si +\begin_inset Formula $n$ +\end_inset + + es impar hacemos +\begin_inset Formula $t=\sin x$ +\end_inset + +, si +\begin_inset Formula $m$ +\end_inset + + es impar, +\begin_inset Formula $t=\cos x$ +\end_inset + +, y si ambos son pares, usamos +\begin_inset Formula $\cos^{2}x=\frac{1+\cos(2x)}{2}$ +\end_inset + + y +\begin_inset Formula $\sin^{2}x=\frac{1-\cos(2x)}{2}$ +\end_inset + + para +\begin_inset Quotes cld +\end_inset + +reducir el grado +\begin_inset Quotes crd +\end_inset + +. +\end_layout + +\begin_layout Subsection +Funciones de la forma +\begin_inset Formula $f(e^{x})$ +\end_inset + + +\end_layout + +\begin_layout Standard +Hacemos el cambio +\begin_inset Formula $t=e^{x}$ +\end_inset + + y +\begin_inset Formula $dt=e^{x}dx$ +\end_inset + +, y esto también sirve para el coseno y seno hiperbólicos ( +\begin_inset Formula $\cosh$ +\end_inset + + y +\begin_inset Formula $\sinh$ +\end_inset + +). +\end_layout + +\begin_layout Subsection +Funciones que contienen +\begin_inset Formula $\sqrt{ax^{2}+2bx+c}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $d:=\frac{ac-b^{2}}{a}$ +\end_inset + + y se tiene +\begin_inset Formula $ax^{2}+2bx+c=a\left(x+\frac{b}{a}\right)^{2}+d$ +\end_inset + +. + Hacemos entonces el cambio de variable +\begin_inset Formula $t=x+\frac{b}{a}$ +\end_inset + + y a continuación: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>0$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=d\tan^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{d\tan^{2}u+d}=\sqrt{d}\sqrt{1+\tan^{2}u}=\sqrt{d}\sqrt{\sec^{2}u}=\sqrt{d}\sec u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{\frac{d}{a}}\sec^{2}u\,du$ +\end_inset + +. + También podemos hacer +\begin_inset Formula $at^{2}=d\sinh^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{d\sinh^{2}u+d}=\sqrt{d}\sqrt{\sinh^{2}u+1}=\sqrt{d}\cosh u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{\frac{d}{a}}\cosh u\,du$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Si +\begin_inset Formula $a>0$ +\end_inset + + y +\begin_inset Formula $d<0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=-d\sec^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{-d\sec^{2}u+d}=\sqrt{-d}\sqrt{\sec^{2}u+1}=\sqrt{-d}\tan u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sec u\tan u\,du$ +\end_inset + +. + También podemos hacer +\begin_inset Formula $at^{2}=-d\cosh^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{-d\cosh^{2}u+d}=\sqrt{-d}\sqrt{\cosh^{2}u-1}=\sqrt{-d}\sinh u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sinh u\,du$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<0$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=-d\sin^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{-d\sin^{2}u+d}=\sqrt{d}\sqrt{1-\sin^{2}u}=\sqrt{d}\cos u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\cos u\,du$ +\end_inset + +. +\end_layout + +\begin_layout Section +Aplicaciones +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continuas, si +\begin_inset Formula $f(a)=g(a)$ +\end_inset + +, +\begin_inset Formula $f(b)=g(b)$ +\end_inset + + y +\begin_inset Formula $f(x)\geq g(x)$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, se define el +\series bold +área encerrada +\series default + por las gráficas de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + como +\begin_inset Formula $\int_{a}^{b}(f(x)-g(x))\,dx$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}\in{\cal C}^{1}[a,b]$ +\end_inset + +, la +\series bold +longitud de la curva +\series default + +\begin_inset Formula $C=\{(x,f(x))\}_{x\in[a,b]}$ +\end_inset + + viene dada por +\begin_inset Formula $L=\int_{a}^{b}\sqrt{1+f'(x)^{2}}\,dx$ +\end_inset + +. + +\series bold +Interpretación: +\series default + Sea +\begin_inset Formula $\pi\equiv(a=x_{0}<\dots<x_{n}=b)\in{\cal P}([a,b])$ +\end_inset + +, sea +\begin_inset Formula $P_{i}=(x_{i},f(x_{i}))$ +\end_inset + +, una aproximación a la curva es +\begin_inset Formula +\begin{multline*} +\sum_{i=1}^{n}d(P_{i-1},P_{i})=\sum_{i=1}^{n}\sqrt{(f(x_{i})-f(x_{i-1}))^{2}+(x_{i}-x_{i-1})^{2}}=\\ +=\sum_{i=1}^{n}\sqrt{\left(\frac{f(x_{i})-f(x_{i-1})}{x_{i}-x_{i-1}}\right)^{2}+1}(x_{i}-x_{i-1})=\sum_{i=1}^{n}\sqrt{1+f'(\xi_{i})^{2}}(x_{i}-x_{i-1}) +\end{multline*} + +\end_inset + + con +\begin_inset Formula $\xi_{i}\in(x_{i-1},x_{i})$ +\end_inset + +, que converge a +\begin_inset Formula $\int_{a}^{b}\sqrt{1+f'(x)^{2}}dx$ +\end_inset + + cuando +\begin_inset Formula $\Vert\pi\Vert$ +\end_inset + + tiende a 0. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +sólido de revolución +\series default + al cuerpo obtenido al girar una función +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + alrededor del eje horizontal. + Su +\series bold +volumen +\series default + viene dado por +\begin_inset Formula $V=\pi\int_{a}^{b}f(x)^{2}\,dx$ +\end_inset + +, y su +\series bold +área +\series default + (lateral) por +\begin_inset Formula $A=2\pi\int_{a}^{b}f(x)\sqrt{1+f'(x)^{2}}\,dx$ +\end_inset + +. + +\series bold +Interpretación: +\series default + Sea +\begin_inset Formula $f$ +\end_inset + + continua y positiva. + Para hallar el volumen tomamos +\begin_inset Formula $\pi\equiv(x_{0}<\dots<x_{n})\in{\cal P}([a,b])$ +\end_inset + + y aproximamos el volumen por secciones cilíndricas con radio +\begin_inset Formula $f(x_{i})$ +\end_inset + + y altura +\begin_inset Formula $x_{i}-x_{i-1}$ +\end_inset + +, con lo que su radio viene dado por +\begin_inset Formula $\pi f(x_{i})^{2}(x_{i}-x_{i-1})$ +\end_inset + +. + Sumando obtenemos +\begin_inset Formula $\sum_{i=1}^{n}\pi f(x_{i})^{2}(x_{i}-x_{i-1})$ +\end_inset + +, que converge a +\begin_inset Formula $\pi\int_{a}^{b}f(x)^{2}\,dx$ +\end_inset + +. + El área se obtiene con un razonamiento similar al usado para la longitud + de la curva. +\end_layout + +\begin_layout Standard +El +\series bold +volumen +\series default + del sólido resultante de girar alrededor del eje vertical la superficie + encerrada por las rectas +\begin_inset Formula $x=a$ +\end_inset + +, +\begin_inset Formula $x=b$ +\end_inset + + e +\begin_inset Formula $y=f(x)$ +\end_inset + + es +\begin_inset Formula $2\pi\int_{a}^{b}xf(x)\,dx$ +\end_inset + +. +\end_layout + +\begin_layout Section +Integrales impropias +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:[a,b)\rightarrow\mathbb{R}$ +\end_inset + + ( +\begin_inset Formula $b\leq+\infty$ +\end_inset + +) es +\series bold +localmente integrable +\series default + si +\begin_inset Formula $\forall u\in[a,b),f|_{[a,u]}\in{\cal R}[a,b]$ +\end_inset + +. + Si además existe +\begin_inset Formula $\lim_{u\rightarrow b^{-}}\int_{a}^{u}f(x)\,dx$ +\end_inset + + diremos que la +\series bold +integral impropia +\series default + +\begin_inset Formula $\int_{a}^{b}f(x)\,dx$ +\end_inset + + es convergente y su valor es este límite. + Análogamente, +\begin_inset Formula $f:(a,b]\rightarrow\mathbb{R}$ +\end_inset + + ( +\begin_inset Formula $a\geq-\infty$ +\end_inset + +) es localmente integrable si +\begin_inset Formula $\forall u\in(a,b],f|_{[u,b]}\in{\cal R}[a,b]$ +\end_inset + +, y si además existe +\begin_inset Formula $\lim_{u\rightarrow a^{+}}\int_{u}^{b}f(x)\,dx$ +\end_inset + + diremos que la integral impropia +\begin_inset Formula $\int_{a}^{b}f(x)\,dx$ +\end_inset + + es convergente y su valor es este límite. + En ambos casos, si el límite es +\begin_inset Formula $+\infty$ +\end_inset + + o +\begin_inset Formula $-\infty$ +\end_inset + +, diremos que la integral +\series bold +diverge +\series default +, y si no existe el límite diremos que no existe la integral impropia. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $f$ +\end_inset + + localmente integrable en +\begin_inset Formula $[a,b)$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es integrable en sentido impropio en +\begin_inset Formula $[a,b)$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $[c,b)$ +\end_inset + + y entonces +\begin_inset Formula $\int_{a}^{b}f(x)\,dx=\int_{a}^{c}f(x)\,dx+\int_{c}^{b}f(x)\,dx$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $a<c<t<b$ +\end_inset + +, +\begin_inset Formula $\int_{a}^{t}f(x)\,dx=\int_{a}^{c}f(x)\,dx+\int_{c}^{t}f(x)\,dx$ +\end_inset + +, por lo que existe +\begin_inset Formula $\lim_{t\rightarrow b^{-}}\int_{a}^{t}f(x)\,dx$ +\end_inset + + si y sólo si existe +\begin_inset Formula $\lim_{t\rightarrow b^{-}}\int_{c}^{t}f(x)\,dx$ +\end_inset + +, lo que demuestra el teorema. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}$ +\end_inset + + ( +\begin_inset Formula $a\geq-\infty,b\leq+\infty$ +\end_inset + +) es integrable Riemann en cada subintervalo cerrado de +\begin_inset Formula $(a,b)$ +\end_inset + +, diremos que la integral impropia +\begin_inset Formula $\int_{a}^{b}f(x)\,dx$ +\end_inset + + es convergente si para un +\begin_inset Formula $c\in(a,b)$ +\end_inset + + son convergentes +\begin_inset Formula $\int_{a}^{c}f(x)\,dx$ +\end_inset + + y +\begin_inset Formula $\int_{c}^{b}f(x)\,dx$ +\end_inset + +, y definimos +\begin_inset Formula +\[ +\int_{a}^{b}f(x)\,dx:=\int_{a}^{c}f(x)\,dx+\int_{c}^{b}f(x)\,dx +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El valor de esta integral no depende de +\begin_inset Formula $c$ +\end_inset + +. + La +\series bold +condición de Cauchy +\series default + afirma que, dada +\begin_inset Formula $f:[a,b)\rightarrow\mathbb{R}$ +\end_inset + +, existe +\begin_inset Formula $\lim_{x\rightarrow b^{-}}f(x)$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists b_{0}\in(a,b):\forall x_{1},x_{2}\in(b_{0},b):x_{1}<x_{2},|f(x_{1})-f(x_{2})|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default + y consecuencia de lo anterior, si +\begin_inset Formula $f$ +\end_inset + + es localmente integrable en +\begin_inset Formula $[a,b)$ +\end_inset + +, la integral impropia +\begin_inset Formula $\int_{a}^{b}f(x)\,dx$ +\end_inset + + es convergente si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists b_{0}\in(a,b):\forall x_{1},x_{2}\in(b_{0},b):x_{1}<x_{2},\left|\int_{x_{1}}^{x_{2}}f(t)\,dt\right|<\varepsilon$ +\end_inset + +. + Más +\series bold +teoremas +\series default +: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son integrables en sentido impropio en +\begin_inset Formula $[a,b)$ +\end_inset + +, dados +\begin_inset Formula $\lambda,\mu\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\lambda f+\mu g$ +\end_inset + + es integrable en sentido impropio con +\begin_inset Formula +\[ +\int_{a}^{b}(\lambda f+\mu g)(t)\,dt=\lambda\int_{a}^{b}f(t)\,dt+\mu\int_{a}^{b}g(t)\,dt +\] + +\end_inset + +Basta tomar límites cuando +\begin_inset Formula $x$ +\end_inset + + tiende a +\begin_inset Formula $b$ +\end_inset + + por la izquierda en la linealidad de integrales propias. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son continuas en +\begin_inset Formula $[a,b)$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + es derivable con derivada continua, sea +\begin_inset Formula $F$ +\end_inset + + una primitiva de +\begin_inset Formula $f$ +\end_inset + +, la siguiente igualdad se cumple si existen dos de los tres límites e integrale +s impropias en ella: +\begin_inset Formula +\[ +\int_{a}^{b}f(t)g(t)\,dt=\lim_{x\rightarrow b^{-}}F(x)g(x)-F(a)g(a)-\int_{a}^{b}F(t)g'(t)\,dt +\] + +\end_inset + +Basta tomar límites en la identidad dada por la regla de integración por + partes. +\end_layout + +\begin_layout Subsection +Integrales no negativas +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f$ +\end_inset + + es localmente integrable en +\begin_inset Formula $[a,b)$ +\end_inset + + y no negativa, +\begin_inset Formula $\int_{a}^{b}f(t)\,dt$ +\end_inset + + converge si y sólo si +\begin_inset Formula $F(x)=\int_{a}^{x}f(t)\,dt$ +\end_inset + + está acotada. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Como +\begin_inset Formula $f$ +\end_inset + + es no negativa, +\begin_inset Formula $F$ +\end_inset + + es creciente, y si no estuviese acotada sería +\begin_inset Formula $\lim_{x\rightarrow b^{-}}F(x)=+\infty$ +\end_inset + + y la integral impropia divergería. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $F$ +\end_inset + + está acotada existe +\begin_inset Formula $\lim_{x\rightarrow b^{-}}F(x)=\sup\{F(x)\}_{x\in[a,b)}$ +\end_inset + +, luego la integral impropia converge. +\end_layout + +\begin_layout Standard +Otro +\series bold +teorema +\series default + es que si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son localmente integrables en +\begin_inset Formula $[a,b)$ +\end_inset + + y no negativas y existe +\begin_inset Formula $K\in\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + entorno de +\begin_inset Formula $b$ +\end_inset + + tal que +\begin_inset Formula $x\in V\implies f(x)\leq Kg(x)$ +\end_inset + +, entonces si +\begin_inset Formula $\int_{a}^{b}g(t)\,dt$ +\end_inset + + converge, también lo hace +\begin_inset Formula $\int_{a}^{b}f(t)\,dt$ +\end_inset + +, por lo que si +\begin_inset Formula $\int_{a}^{b}f(t)\,dt$ +\end_inset + + diverge también lo hace +\begin_inset Formula $\int_{a}^{b}g(t)\,dt$ +\end_inset + + (y divergir también). + +\series bold +Demostración: +\series default + La convergencia depende sólo del comportamiento de las funciones en un + entorno, y en este +\begin_inset Formula $\int_{a}^{x}f(t)\,dt\leq K\int_{a}^{x}g(t)\,dt$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí que si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son localmente integrables en +\begin_inset Formula $[a,b)$ +\end_inset + + y no negativas con +\begin_inset Formula $A:=\lim_{x\rightarrow b^{-}}\frac{f(t)}{g(t)}$ +\end_inset + +, entonces: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $A\neq0,\infty$ +\end_inset + +, ambas integrales tienen el mismo carácter. +\begin_inset Newline newline +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + con +\begin_inset Formula $\varepsilon<A$ +\end_inset + +, existe +\begin_inset Formula $a_{\varepsilon}$ +\end_inset + + tal que si +\begin_inset Formula $a_{\varepsilon}\leq x\leq b$ +\end_inset + + se tiene +\begin_inset Formula $\left|\frac{f(x)}{g(x)}-A\right|\leq\varepsilon$ +\end_inset + +, con lo que +\begin_inset Formula $A-\varepsilon\leq\frac{f(x)}{g(x)}\leq A+\varepsilon$ +\end_inset + +, luego para +\begin_inset Formula $x\in[a_{\varepsilon},b)$ +\end_inset + + tenemos +\begin_inset Formula $(A-\varepsilon)g(x)\leq f(x)\leq(A+\varepsilon)g(x)$ +\end_inset + +, y no hay más que aplicar el teorema anterior. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $A=0$ +\end_inset + +, la convergencia de +\begin_inset Formula $\int_{a}^{b}g(t)\,dt$ +\end_inset + + implica la de +\begin_inset Formula $\int_{a}^{b}f(t)\,dt$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como antes, obtenemos +\begin_inset Formula $f(x)\leq\varepsilon g(x)$ +\end_inset + + y aplicamos el teorema anterior. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $A=\infty$ +\end_inset + +, la convergencia de +\begin_inset Formula $\int_{a}^{b}f(t)\,dt$ +\end_inset + + implica la de +\begin_inset Formula $\int_{a}^{b}g(t)\,dt$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Otro +\series bold +teorema +\series default + es que si +\begin_inset Formula $f$ +\end_inset + + es no negativa y localmente integrable en +\begin_inset Formula $(0,1]$ +\end_inset + + y existe +\begin_inset Formula $\alpha<1$ +\end_inset + + con +\begin_inset Formula $\lim_{t\rightarrow0^{+}}f(t)t^{\alpha}$ +\end_inset + + finito, +\begin_inset Formula $\int_{0}^{1}f(t)\,dt$ +\end_inset + + es convergente, mientras que si existe +\begin_inset Formula $\alpha\geq1$ +\end_inset + + con +\begin_inset Formula $\lim_{t\rightarrow0^{+}}f(t)t^{\alpha}$ +\end_inset + + no nulo, la integral diverge. + +\series bold +Demostración: +\series default + +\begin_inset Formula $\lim_{t\rightarrow0^{+}}f(t)t^{\alpha}=\lim_{t\rightarrow0^{+}}\frac{f(t)}{\left(\frac{1}{t^{\alpha}}\right)}$ +\end_inset + +, y si +\begin_inset Formula $\alpha<1$ +\end_inset + +, la integral +\begin_inset Formula $\int_{0}^{1}\frac{dt}{t^{\alpha}}$ +\end_inset + + es convergente y, por lo anterior, +\begin_inset Formula $\int_{0}^{1}f(t)\,dt$ +\end_inset + + también. + De que +\begin_inset Formula $\int_{0}^{1}\frac{dt}{t^{\alpha}}$ +\end_inset + + diverge si +\begin_inset Formula $t\geq1$ +\end_inset + + se desprende la última afirmación. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f$ +\end_inset + + es no negativa y localmente integrable en +\begin_inset Formula $[a,+\infty)$ +\end_inset + +, si existe +\begin_inset Formula $\alpha>1$ +\end_inset + + con +\begin_inset Formula $\lim_{t\rightarrow\infty}f(t)t^{\alpha}$ +\end_inset + + finito, +\begin_inset Formula $\int_{a}^{\infty}f(t)\,dt$ +\end_inset + + converge, mientras que si existe +\begin_inset Formula $\alpha\leq1$ +\end_inset + + con +\begin_inset Formula $\lim_{t\rightarrow\infty}f(t)t^{\alpha}$ +\end_inset + + no nulo, la integral diverge. +\end_layout + +\begin_layout Subsection +Convergencia absoluta +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f$ +\end_inset + + localmente integrable en +\begin_inset Formula $[a,b)$ +\end_inset + +, decimos que la integral impropia de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b)$ +\end_inset + + es +\series bold +absolutamente convergente +\series default + si +\begin_inset Formula $\int_{a}^{b}|f(t)|\,dt$ +\end_inset + + es convergente. + La convergencia absoluta implica la convergencia. + +\series bold +Demostración: +\series default + Por el criterio de convergencia de Cauchy aplicado a +\begin_inset Formula $|f(t)|$ +\end_inset + +, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $b_{0}\in(a,b)$ +\end_inset + + tal que si +\begin_inset Formula $b_{0}<x_{1}<x_{2}<b$ +\end_inset + + entonces +\begin_inset Formula $\int_{x_{1}}^{x_{2}}|f(t)|\,dt<\varepsilon$ +\end_inset + +. + Entonces +\begin_inset Formula $\left|\int_{x_{1}}^{x_{2}}f(t)\,dt\right|<\varepsilon$ +\end_inset + +, lo que implica que +\begin_inset Formula $\int_{a}^{b}f(t)\,dt$ +\end_inset + + es convergente. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son funciones continuas en +\begin_inset Formula $[a,b)$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + tiene derivada continua, si +\begin_inset Formula $F(x):=\int_{a}^{x}f(t)\,dt$ +\end_inset + + está acotada superiormente por +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $\int_{a}^{x}|g'(t)|\,dt$ +\end_inset + + está acotada superiormente por +\begin_inset Formula $k$ +\end_inset + + y +\begin_inset Formula $\lim_{t\rightarrow b^{-}}g(t)=0$ +\end_inset + +, entonces +\begin_inset Formula $\int_{a}^{b}f(t)g(t)\,dt$ +\end_inset + + es convergente. + +\series bold +Demostración: +\series default + Basta probar la existencia de +\begin_inset Formula $\lim_{x\rightarrow b^{-}}F(x)g(x)$ +\end_inset + + y de +\begin_inset Formula $\lim_{x\rightarrow b^{-}}\int_{a}^{x}F(t)g'(t)\,dt$ +\end_inset + +. + Las condiciones +\begin_inset Formula $F(x)\leq K$ +\end_inset + + y +\begin_inset Formula $\lim_{t\rightarrow b^{-}}g(t)=0$ +\end_inset + + aseguran que el primer límite es 0, y las dos primeras ( +\begin_inset Formula $F(x)\leq K$ +\end_inset + + y +\begin_inset Formula $\int_{a}^{x}|g'(t)|dt\leq k$ +\end_inset + +) implican que +\begin_inset Formula $\int_{a}^{x}F(t)g'(t)\,dt$ +\end_inset + + es absolutamente convergente, pues +\begin_inset Formula +\[ +\int_{a}^{x}|F(t)||g'(t)|\,dt\leq Kk +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +criterio de Dirichlet +\series default + afirma que si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son continuas en +\begin_inset Formula $[a,b)$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + tiene derivada continua, si existe +\begin_inset Formula $K\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $\left|\int_{a}^{x}f(t)\,dt\right|\leq K$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + es monótona decreciente con +\begin_inset Formula $\lim_{t\rightarrow b^{-}}g(t)=0$ +\end_inset + +, la integral impropia +\begin_inset Formula $\int_{a}^{b}f(t)g(t)\,dt$ +\end_inset + + es convergente. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $g$ +\end_inset + + es decreciente, +\begin_inset Formula $g'(t)\leq0$ +\end_inset + +, luego +\begin_inset Formula $\int_{a}^{x}|g'(t)|\,dt=-\int_{a}^{x}g'(t)\,dt=g(a)-g(x)\overset{g(x)\geq0}{\leq}g(a)$ +\end_inset + +, y se tienen entonces todas las condiciones del teorema anterior. +\end_layout + +\end_body +\end_document |
