diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fvv1/n2.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'fvv1/n2.lyx')
| -rw-r--r-- | fvv1/n2.lyx | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/fvv1/n2.lyx b/fvv1/n2.lyx index 1b761e2..f9a9447 100644 --- a/fvv1/n2.lyx +++ b/fvv1/n2.lyx @@ -542,7 +542,7 @@ suma telescópica se supone lo suficientemente pequeño. Ahora llamamos -\begin_inset Formula $\varphi_{i}(t):=f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$ +\begin_inset Formula $\varphi_{i}(t)\coloneqq f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$ \end_inset , con lo que @@ -550,7 +550,7 @@ suma telescópica \end_inset , y -\begin_inset Formula $\Delta_{i}:=\varphi_{i}(h_{i})-\varphi_{i}(0)=f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})=\varphi'_{i}(\xi_{i})h_{i}$ +\begin_inset Formula $\Delta_{i}\coloneqq \varphi_{i}(h_{i})-\varphi_{i}(0)=f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})=\varphi'_{i}(\xi_{i})h_{i}$ \end_inset para algún @@ -662,11 +662,11 @@ regla de la cadena Demostración: \series default Sean -\begin_inset Formula $L:=df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\begin_inset Formula $L\coloneqq df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ \end_inset y -\begin_inset Formula $S:=dg(f(a)):\mathbb{R}^{n}\rightarrow\mathbb{R}^{k}$ +\begin_inset Formula $S\coloneqq dg(f(a)):\mathbb{R}^{n}\rightarrow\mathbb{R}^{k}$ \end_inset , tenemos que @@ -686,7 +686,7 @@ y queremos ver que \end_inset Si llamamos -\begin_inset Formula $\eta:=f(a+h)-f(a)$ +\begin_inset Formula $\eta\coloneqq f(a+h)-f(a)$ \end_inset , que tiende a 0 por la continuidad de @@ -897,17 +897,17 @@ to por abiertos de \end_inset y -\begin_inset Formula $\{B_{i}\}_{i=1}^{k}\mid =\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$ +\begin_inset Formula $\{B_{i}\}_{i=1}^{k}\coloneqq \{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$ \end_inset un subrecubrimiento finito del que suponemos que no podemos quitar ninguna bola. Ahora llamamos -\begin_inset Formula $x_{0}:=a$ +\begin_inset Formula $x_{0}\coloneqq a$ \end_inset y -\begin_inset Formula $x_{k+1}:=b$ +\begin_inset Formula $x_{k+1}\coloneqq b$ \end_inset y suponemos |
