aboutsummaryrefslogtreecommitdiff
path: root/fvv1/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fvv1/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'fvv1/n3.lyx')
-rw-r--r--fvv1/n3.lyx18
1 files changed, 9 insertions, 9 deletions
diff --git a/fvv1/n3.lyx b/fvv1/n3.lyx
index 91f5019..b6138cf 100644
--- a/fvv1/n3.lyx
+++ b/fvv1/n3.lyx
@@ -343,12 +343,12 @@ Demostración:
\end_inset
, y consideramos
-\begin_inset Formula $\Delta_{t,s}:=f(t,s)-f(t,y_{0})-f(x_{0},s)+f(x_{0},y_{0})$
+\begin_inset Formula $\Delta_{t,s}\coloneqq f(t,s)-f(t,y_{0})-f(x_{0},s)+f(x_{0},y_{0})$
\end_inset
.
Si ahora llamamos
-\begin_inset Formula $F_{\overline{s}}(\overline{t}):=f(\overline{t},\overline{s})-f(\overline{t},y_{0})$
+\begin_inset Formula $F_{\overline{s}}(\overline{t})\coloneqq f(\overline{t},\overline{s})-f(\overline{t},y_{0})$
\end_inset
, vemos que
@@ -360,12 +360,12 @@ Demostración:
\end_inset
y que entonces
-\begin_inset Formula $\Delta_{t,s}=F_{s}(t)-F_{s}(x_{0})=F'_{\overline{s}}(\xi_{t,s})(t-x_{0})=\left(\frac{\partial f}{\partial x}(\xi_{t,s},s)-\frac{\partial f}{\partial x}(\xi_{t,s},y_{0})\right)(t-x_{0})\overset{\Phi(\overline{s}):=\frac{\partial f}{\partial x}(\xi_{t,s},\overline{s})}{=}(\Phi(s)-\Phi(y_{0}))(t-x_{0})\overset{\Phi\text{ derivable por hipótesis}}{=}\Phi'(\eta_{t,s})(s-y_{0})(t-x_{0})=\frac{\partial^{2}f}{\partial x\partial y}(\xi_{t,s},\eta_{t,s})(s-y_{0})(t-x_{0})$
+\begin_inset Formula $\Delta_{t,s}=F_{s}(t)-F_{s}(x_{0})=F'_{\overline{s}}(\xi_{t,s})(t-x_{0})=\left(\frac{\partial f}{\partial x}(\xi_{t,s},s)-\frac{\partial f}{\partial x}(\xi_{t,s},y_{0})\right)(t-x_{0})\overset{\Phi(\overline{s})\coloneqq \frac{\partial f}{\partial x}(\xi_{t,s},\overline{s})}{=}(\Phi(s)-\Phi(y_{0}))(t-x_{0})\overset{\Phi\text{ derivable por hipótesis}}{=}\Phi'(\eta_{t,s})(s-y_{0})(t-x_{0})=\frac{\partial^{2}f}{\partial x\partial y}(\xi_{t,s},\eta_{t,s})(s-y_{0})(t-x_{0})$
\end_inset
.
Permutando los papeles de las dos coordenadas (definiendo
-\begin_inset Formula $\sigma_{\overline{t}}(\overline{s}):=f(\overline{t},\overline{s})-f(x,\overline{s})$
+\begin_inset Formula $\sigma_{\overline{t}}(\overline{s})\coloneqq f(\overline{t},\overline{s})-f(x,\overline{s})$
\end_inset
) obtenemos que
@@ -448,7 +448,7 @@ teorema
Demostración:
\series default
Sea
-\begin_inset Formula $R(h):=f(a+h)-f(a)-df(a)(h)-\frac{1}{2}d^{2}f(a)(h,h)$
+\begin_inset Formula $R(h)\coloneqq f(a+h)-f(a)-df(a)(h)-\frac{1}{2}d^{2}f(a)(h,h)$
\end_inset
, y hemos de ver que
@@ -631,7 +631,7 @@ Si
\end_inset
-espacio vectorial con
-\begin_inset Formula $k:=\dim_{K}(V)<+\infty$
+\begin_inset Formula $k\coloneqq \dim_{K}(V)<+\infty$
\end_inset
y
@@ -751,7 +751,7 @@ Podemos suponer que alcanza un máximo.
\end_inset
definimos
-\begin_inset Formula $\varphi_{i}(t):=f(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})$
+\begin_inset Formula $\varphi_{i}(t)\coloneqq f(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})$
\end_inset
, fijado
@@ -848,7 +848,7 @@ suponiendo
\end_inset
dada por
-\begin_inset Formula $\Phi(u):=d^{2}f(a)(u,u)=\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)u_{i}u_{j}$
+\begin_inset Formula $\Phi(u)\coloneqq d^{2}f(a)(u,u)=\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)u_{i}u_{j}$
\end_inset
es continua, luego
@@ -914,7 +914,7 @@ Como
\end_inset
y definimos
-\begin_inset Formula $\varphi(t):=a+tu$
+\begin_inset Formula $\varphi(t)\coloneqq a+tu$
\end_inset
como la función