aboutsummaryrefslogtreecommitdiff
path: root/gae/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /gae/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'gae/n3.lyx')
-rw-r--r--gae/n3.lyx10
1 files changed, 5 insertions, 5 deletions
diff --git a/gae/n3.lyx b/gae/n3.lyx
index 124d2e7..839d85a 100644
--- a/gae/n3.lyx
+++ b/gae/n3.lyx
@@ -685,7 +685,7 @@ Dado un conjunto ortogonal
\end_inset
, el vector
-\begin_inset Formula $\vec{u}_{k+1}:=\vec{x}-\frac{\vec{x}\cdot\vec{u}_{1}}{\Vert\vec{u}_{1}\Vert^{2}}\vec{u}_{1}-\dots-\frac{\vec{x}\cdot\vec{u}_{k}}{\Vert\vec{u}_{k}\Vert^{2}}\vec{u}_{k}$
+\begin_inset Formula $\vec{u}_{k+1}\coloneqq \vec{x}-\frac{\vec{x}\cdot\vec{u}_{1}}{\Vert\vec{u}_{1}\Vert^{2}}\vec{u}_{1}-\dots-\frac{\vec{x}\cdot\vec{u}_{k}}{\Vert\vec{u}_{k}\Vert^{2}}\vec{u}_{k}$
\end_inset
es ortogonal a los del conjunto y
@@ -938,7 +938,7 @@ proyección ortogonal
\end_layout
\begin_layout Standard
-\begin_inset Formula $\vec{u}:=\pi_{U}(\vec{v})$
+\begin_inset Formula $\vec{u}\coloneqq \pi_{U}(\vec{v})$
\end_inset
es la
@@ -1291,7 +1291,7 @@ distancia
\end_inset
como
-\begin_inset Formula $d(P,Q):=\Vert\overrightarrow{PQ}\Vert$
+\begin_inset Formula $d(P,Q)\coloneqq \Vert\overrightarrow{PQ}\Vert$
\end_inset
, y por las propiedades de la norma,
@@ -1348,7 +1348,7 @@ La distancia entre dos variedades
\end_inset
se define como
-\begin_inset Formula $d({\cal L},{\cal L}'):=\inf\{d(P,P')\}_{P\in{\cal L},P'\in{\cal L}'}$
+\begin_inset Formula $d({\cal L},{\cal L}')\coloneqq \inf\{d(P,P')\}_{P\in{\cal L},P'\in{\cal L}'}$
\end_inset
, y la distancia de un punto
@@ -1588,7 +1588,7 @@ La recta ortogonal a
\end_inset
se tiene
-\begin_inset Formula $Q':=Q+\lambda_{0}\vec{a}\in{\cal H}$
+\begin_inset Formula $Q'\coloneqq Q+\lambda_{0}\vec{a}\in{\cal H}$
\end_inset
.