aboutsummaryrefslogtreecommitdiff
path: root/gcs
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan.marinn@um.es>2021-01-15 00:10:17 +0100
committerJuan Marín Noguera <juan.marinn@um.es>2021-01-15 00:10:17 +0100
commit2f1821b3f22954176a26665dc0c84e9a26b8e0e4 (patch)
tree7efeee4c3410a28cbfa165259d648256705f7cf7 /gcs
parent65e1bb39e0c0f032a72c857ee63a666a49b124f0 (diff)
gcs/n4a
Diffstat (limited to 'gcs')
-rw-r--r--gcs/n3.lyx545
1 files changed, 545 insertions, 0 deletions
diff --git a/gcs/n3.lyx b/gcs/n3.lyx
index 8b404e5..0d704ed 100644
--- a/gcs/n3.lyx
+++ b/gcs/n3.lyx
@@ -3230,5 +3230,550 @@ si y sólo si
.
\end_layout
+\begin_layout Section
+Isometrías locales
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+isometría local
+\series default
+ entre dos superficies regulares
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ es una función diferenciable
+\begin_inset Formula $\phi:S_{1}\to S_{2}$
+\end_inset
+
+ tal que para
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $v,w\in T_{p}S_{1}$
+\end_inset
+
+ es
+\begin_inset Formula $\langle d\phi_{p}(v),d\phi_{p}(w)\rangle=\langle v,w\rangle$
+\end_inset
+
+, es decir, tal que
+\begin_inset Formula $d\phi_{p}:T_{p}S_{1}\to T_{\phi(p)}S_{2}$
+\end_inset
+
+ es una isometría lineal.
+ Entonces
+\begin_inset Formula $\phi$
+\end_inset
+
+ conserva ángulos, longitudes y áreas de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ a
+\begin_inset Formula $S_{2}$
+\end_inset
+
+, pero su existencia no implica que exista una isometría lineal
+\begin_inset Formula $\psi:S_{2}\to S_{1}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+isometría
+\series default
+ (
+\series bold
+global
+\series default
+) entre
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ es una isometría local que es un difeomorfismo.
+
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ son (
+\series bold
+globalmente
+\series default
+)
+\series bold
+isométricas
+\series default
+ si existe una isometría global entre ellas, y son
+\series bold
+localmente isométricas
+\series default
+ si para cada
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ hay un entorno
+\begin_inset Formula $V\subseteq S_{1}$
+\end_inset
+
+ de
+\begin_inset Formula $p$
+\end_inset
+
+ y una isometría global
+\begin_inset Formula $\phi:V\to\phi(V)\subseteq S_{2}$
+\end_inset
+
+ y para cada
+\begin_inset Formula $q\in S_{2}$
+\end_inset
+
+ hay un entorno
+\begin_inset Formula $W\subseteq S_{2}$
+\end_inset
+
+ de
+\begin_inset Formula $p$
+\end_inset
+
+ y una isometría global
+\begin_inset Formula $\psi:W\to\phi(W)\subseteq S_{1}$
+\end_inset
+
+.
+ Si existe una isometría local entre
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+,
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ son localmente isométricos.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{TS}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $(\pi_{1}(X,x),*)$
+\end_inset
+
+ es un grupo, llamado
+\series bold
+grupo fundamental
+\series default
+ [...] de
+\begin_inset Formula $X$
+\end_inset
+
+ relativo al
+\series bold
+punto base
+\series default
+
+\begin_inset Formula $x$
+\end_inset
+
+ [...]
+\begin_inset Formula $X$
+\end_inset
+
+ es
+\series bold
+simplemente conexo
+\series default
+ si es conexo por caminos y
+\begin_inset Formula $\pi_{1}(X,x)$
+\end_inset
+
+ es el grupo trivial [...] para todo
+\begin_inset Formula $x\in X$
+\end_inset
+
+.
+ [...] Todo subespacio estrellado de
+\begin_inset Formula $\mathbb{R}^{n}$
+\end_inset
+
+ es simplemente conexo.
+ [...] El grupo fundamental de
+\begin_inset Formula $\mathbb{S}^{1}$
+\end_inset
+
+ es isomorfo a
+\begin_inset Formula $(\mathbb{Z},+)$
+\end_inset
+
+.
+ [...]
+\begin_inset Formula $\pi_{1}(X\times Y,(x,y))\cong\pi_{1}(X,x)\times\pi_{1}(Y,y)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Existe una isometría local entre el plano
+\begin_inset Formula $\Pi:=\{z=0\}$
+\end_inset
+
+ y el cilindro
+\begin_inset Formula $C:=\mathbb{S}^{1}\times\mathbb{R}$
+\end_inset
+
+, pero las superficies no son globalmente isométricas.
+
+\series bold
+Demostración:
+\series default
+ Como el plano es estrellado, su grupo fundamental es el grupo trivial,
+ y como el cilindro es
+\begin_inset Formula $\mathbb{S}^{1}\times\mathbb{R}$
+\end_inset
+
+, su grupo fundamental es
+\begin_inset Formula $\pi_{1}(\mathbb{S}^{1}\times\mathbb{R},e_{1})\cong\pi_{1}(\mathbb{S}_{1},e_{1})\times\pi_{1}(\mathbb{R},0)\cong(\mathbb{Z},+)\times1\cong(\mathbb{Z},+)$
+\end_inset
+
+.
+ Como los grupos fundamentales no son isomorfos,
+\begin_inset Formula $\Pi$
+\end_inset
+
+ y
+\begin_inset Formula $C$
+\end_inset
+
+ no son homeomorfos y por tanto tampoco isométricos.
+ Sea ahora
+\begin_inset Formula $\phi:\Pi\to C$
+\end_inset
+
+ dada por
+\begin_inset Formula $\phi(x,y,0):=(\cos x,\sin x,y)$
+\end_inset
+
+, que es diferenciable.
+ Para
+\begin_inset Formula $p=(x,y,0)\in\Pi$
+\end_inset
+
+,
+\begin_inset Formula $T_{p}S=\Pi$
+\end_inset
+
+, y si
+\begin_inset Formula $v=(v_{1},v_{2},0)\in T_{p}S$
+\end_inset
+
+, sea
+\begin_inset Formula $\alpha:I\to\Pi$
+\end_inset
+
+ dada por
+\begin_inset Formula $\alpha(t):=p+tv$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+d\phi_{p}(v)=\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}(\cos(x+tv_{1}),\sin(x+tv_{1}),y+tv_{2})(0)=(-v_{1}\sin x,v_{1}\cos x,v_{2}).
+\]
+
+\end_inset
+
+Para ver que
+\begin_inset Formula $\phi$
+\end_inset
+
+ conserva el producto escalar, basta ver que conserva módulos, pero
+\begin_inset Formula $|d\phi_{p}(v)|^{2}=v_{1}^{2}+v_{2}^{2}=|v|^{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, sea
+\begin_inset Formula $\phi:S_{1}\to S_{2}$
+\end_inset
+
+ una isometría local entre superficies regulares, para todo
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ existen parametrizaciones
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $(U,\overline{X})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ en
+\begin_inset Formula $\phi(p)$
+\end_inset
+
+ con los mismos parámetros de la primera forma fundamental.
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $(\tilde{U},X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{X}:\phi\circ X:\tilde{U}\to S_{2}$
+\end_inset
+
+, como
+\begin_inset Formula $\phi$
+\end_inset
+
+ es un difeomorfismo local, existe un entorno
+\begin_inset Formula $V\subseteq S_{1}$
+\end_inset
+
+ de
+\begin_inset Formula $p$
+\end_inset
+
+ en el que
+\begin_inset Formula $\phi:V\to\phi(V)$
+\end_inset
+
+ es un difeomorfismo, por lo que si
+\begin_inset Formula $U:=X^{-1}(V)\subseteq\tilde{U}$
+\end_inset
+
+, restringiendo
+\begin_inset Formula $\overline{X}$
+\end_inset
+
+ a
+\begin_inset Formula $U$
+\end_inset
+
+,
+\begin_inset Formula $(U,\overline{X})$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ en
+\begin_inset Formula $\phi(p)$
+\end_inset
+
+.
+ Entonces, si
+\begin_inset Formula $q:=X^{-1}(p)$
+\end_inset
+
+,
+\begin_inset Formula $d\overline{X}_{q}=d(\phi\circ X)_{q}=d\phi_{p}\circ dX_{q}$
+\end_inset
+
+, luego
+\begin_inset Formula $\overline{X}_{u}(q)=d\phi_{p}(X_{u}(q))$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{X}_{v}(q)=d\phi_{p}(X_{v}(q))$
+\end_inset
+
+.
+ Con esto, como
+\begin_inset Formula $\phi$
+\end_inset
+
+ es una isometría local,
+\begin_inset Formula $\overline{E}=\langle\overline{X}_{u}(q),\overline{X}_{u}(q)\rangle=\langle d\phi_{p}(X_{u}(q)),d\phi(X_{u}(q))\rangle=\langle X_{u}(q),X_{u}(q)\rangle=E$
+\end_inset
+
+, y análogamente
+\begin_inset Formula $\overline{F}=F$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{G}=G$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, dadas dos superficies regulares
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ y dos parametrizaciones
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $(U,\overline{X})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ con los mismos parámetros de la primera forma fundamental, entonces
+\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$
+\end_inset
+
+ es una isometría.
+
+\series bold
+Demostración:
+\series default
+ Es un difeomorfismo por ser composición de difeomorfismos, y queda ver
+ que conserva productos escalares.
+ Sean
+\begin_inset Formula $q\in U$
+\end_inset
+
+ y
+\begin_inset Formula $p:=X(q)$
+\end_inset
+
+,
+\begin_inset Formula $d\phi_{p}\circ dX_{q}=d(\phi\circ X)_{q}=d\overline{X}_{q}$
+\end_inset
+
+ por la regla de la cadena, por lo que
+\begin_inset Formula $d\phi_{p}(X_{u}(q))=\overline{X}_{u}(q)$
+\end_inset
+
+ y
+\begin_inset Formula $d\phi_{p}(X_{v}(q))=\overline{X}_{v}(q)$
+\end_inset
+
+.
+ Por tanto, en
+\begin_inset Formula $q$
+\end_inset
+
+,
+\begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{u})\rangle=\langle\overline{X}_{u},\overline{X}_{u}\rangle=\overline{E}=E=\langle X_{u},X_{u}\rangle$
+\end_inset
+
+, y de forma análoga
+\begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{v})\rangle=\langle X_{u},X_{v}\rangle$
+\end_inset
+
+ y
+\begin_inset Formula $\langle d\phi_{p}(X_{v}),d\phi_{p}(X_{v})\rangle=\langle X_{v},X_{v}\rangle$
+\end_inset
+
+, pero
+\begin_inset Formula $(X_{u},X_{v})$
+\end_inset
+
+ es una base de
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+, luego
+\begin_inset Formula $d\phi_{p}$
+\end_inset
+
+ conserva productos escalares.
+\end_layout
+
\end_body
\end_document