aboutsummaryrefslogtreecommitdiff
path: root/ggs/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ggs/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'ggs/n3.lyx')
-rw-r--r--ggs/n3.lyx80
1 files changed, 40 insertions, 40 deletions
diff --git a/ggs/n3.lyx b/ggs/n3.lyx
index f553749..28601db 100644
--- a/ggs/n3.lyx
+++ b/ggs/n3.lyx
@@ -110,7 +110,7 @@ aplicación exponencial
\end_inset
donde
-\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$
+\begin_inset Formula ${\cal D}_{p}\coloneqq \{v\in T_{p}S\mid 1\in I_{v}\}$
\end_inset
.
@@ -278,7 +278,7 @@ Como
\end_inset
, sea
-\begin_inset Formula $\alpha(t):=tw$
+\begin_inset Formula $\alpha(t)\coloneqq tw$
\end_inset
, existe
@@ -377,11 +377,11 @@ entorno normal
\end_inset
, sean
-\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)\in{\cal U}$
+\begin_inset Formula $v_{p}\coloneqq \exp_{p_{0}}^{-1}(p)\in{\cal U}$
\end_inset
y el segmento de geodésica
-\begin_inset Formula $\gamma_{p}:=\gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$
+\begin_inset Formula $\gamma_{p}\coloneqq \gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$
\end_inset
, entonces
@@ -487,7 +487,7 @@ Demostración:
\end_inset
dada por
-\begin_inset Formula $\alpha(t):=v+tw=(1+\lambda t)v$
+\begin_inset Formula $\alpha(t)\coloneqq v+tw=(1+\lambda t)v$
\end_inset
, entonces
@@ -512,7 +512,7 @@ Para el caso general, sea
\end_inset
dada por
-\begin_inset Formula $\tau(s,t):=s\alpha(t):=s(v+tw)$
+\begin_inset Formula $\tau(s,t)\coloneqq s\alpha(t)\coloneqq s(v+tw)$
\end_inset
, para todo
@@ -591,7 +591,7 @@ Como
.
Proyectando el subrecubrimiento
-\begin_inset Formula $A:=\bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$
+\begin_inset Formula $A\coloneqq \bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$
\end_inset
en
@@ -608,7 +608,7 @@ Como
.
Sea
-\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$
+\begin_inset Formula $\varepsilon\coloneqq \min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$
\end_inset
, para
@@ -632,7 +632,7 @@ luego
\begin_layout Standard
Sea ahora
-\begin_inset Formula $\varphi:=\exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$
+\begin_inset Formula $\varphi\coloneqq \exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$
\end_inset
.
@@ -733,7 +733,7 @@ pues
\end_inset
dada por
-\begin_inset Formula $\beta_{s}(t):=\exp_{p}(s\alpha(t))$
+\begin_inset Formula $\beta_{s}(t)\coloneqq \exp_{p}(s\alpha(t))$
\end_inset
,
@@ -909,7 +909,7 @@ Sean
\end_inset
tal que
-\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal D}(0,r)\coloneqq \{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -925,7 +925,7 @@ disco geodésico
\end_inset
a
-\begin_inset Formula $D(p,r):=\exp_{p}({\cal D}(0,r))$
+\begin_inset Formula $D(p,r)\coloneqq \exp_{p}({\cal D}(0,r))$
\end_inset
, y si
@@ -933,7 +933,7 @@ disco geodésico
\end_inset
cumple que
-\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal S}(0,r)\coloneqq \{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -949,7 +949,7 @@ circunferencia geodésica
\end_inset
a
-\begin_inset Formula $S(p,r):=\exp_{p}({\cal S}(0,r))$
+\begin_inset Formula $S(p,r)\coloneqq \exp_{p}({\cal S}(0,r))$
\end_inset
.
@@ -1042,7 +1042,7 @@ teorema
Demostración:
\series default
Sea
-\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)$
+\begin_inset Formula $v_{p}\coloneqq \exp_{p_{0}}^{-1}(p)$
\end_inset
, entonces
@@ -1075,11 +1075,11 @@ Sea
\begin_layout Standard
Sean
-\begin_inset Formula $A:=\alpha^{-1}(\{p_{0}\})$
+\begin_inset Formula $A\coloneqq \alpha^{-1}(\{p_{0}\})$
\end_inset
y
-\begin_inset Formula $t_{0}:=\sup A$
+\begin_inset Formula $t_{0}\coloneqq \sup A$
\end_inset
, existe una sucesión
@@ -1132,7 +1132,7 @@ Sean
\end_inset
, basta demostrar la propiedad para
-\begin_inset Formula $\alpha:=\alpha'$
+\begin_inset Formula $\alpha\coloneqq \alpha'$
\end_inset
.
@@ -1148,7 +1148,7 @@ Sean
\end_inset
y
-\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha:[0,1]\to{\cal U}$
+\begin_inset Formula $\tilde{\alpha}\coloneqq \exp_{p_{0}}^{-1}\circ\alpha:[0,1]\to{\cal U}$
\end_inset
, que cumple
@@ -1165,7 +1165,7 @@ Sean
.
Sean entonces
-\begin_inset Formula $r(t):=\Vert\tilde{\alpha}(t)\Vert$
+\begin_inset Formula $r(t)\coloneqq \Vert\tilde{\alpha}(t)\Vert$
\end_inset
y, para
@@ -1173,7 +1173,7 @@ Sean
\end_inset
,
-\begin_inset Formula $V(t):=\frac{\tilde{\alpha}(t)}{\Vert\tilde{\alpha}(t)\Vert}$
+\begin_inset Formula $V(t)\coloneqq \frac{\tilde{\alpha}(t)}{\Vert\tilde{\alpha}(t)\Vert}$
\end_inset
, de modo que
@@ -1392,7 +1392,7 @@ Finalmente, sea
.
En otro caso, sea
-\begin_inset Formula $r^{*}:=\frac{r+\Vert v_{p}\Vert}{2}$
+\begin_inset Formula $r^{*}\coloneqq \frac{r+\Vert v_{p}\Vert}{2}$
\end_inset
, de modo que
@@ -1400,7 +1400,7 @@ Finalmente, sea
\end_inset
, y si
-\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha$
+\begin_inset Formula $\tilde{\alpha}\coloneqq \exp_{p_{0}}^{-1}\circ\alpha$
\end_inset
, como
@@ -1422,7 +1422,7 @@ Finalmente, sea
es
\begin_inset Formula
\[
-A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid \alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
+A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
\]
\end_inset
@@ -1436,11 +1436,11 @@ Entonces, como
\end_inset
también lo es y existe
-\begin_inset Formula $t^{*}:=\min A$
+\begin_inset Formula $t^{*}\coloneqq \min A$
\end_inset
, y llamando
-\begin_inset Formula $p^{*}:=\alpha(t^{*})\in S(p_{0},r^{*})$
+\begin_inset Formula $p^{*}\coloneqq \alpha(t^{*})\in S(p_{0},r^{*})$
\end_inset
,
@@ -1492,7 +1492,7 @@ Sean
\end_inset
y
-\begin_inset Formula $U:=\phi^{-1}({\cal U})$
+\begin_inset Formula $U\coloneqq \phi^{-1}({\cal U})$
\end_inset
es abierto en
@@ -1504,7 +1504,7 @@ Sean
\end_inset
dada por
-\begin_inset Formula $X(u,v):=\exp_{p_{0}}(\phi(u,v))$
+\begin_inset Formula $X(u,v)\coloneqq \exp_{p_{0}}(\phi(u,v))$
\end_inset
es una parametrización llamada
@@ -1626,7 +1626,7 @@ Sean
\end_inset
,
-\begin_inset Formula $\ell:=\{\lambda e_{1}\}_{\lambda\geq0}$
+\begin_inset Formula $\ell\coloneqq \{\lambda e_{1}\}_{\lambda\geq0}$
\end_inset
,
@@ -1642,11 +1642,11 @@ Sean
\end_inset
-\begin_inset Formula $V_{0}:=\exp_{p_{0}}({\cal U}\setminus\ell)$
+\begin_inset Formula $V_{0}\coloneqq \exp_{p_{0}}({\cal U}\setminus\ell)$
\end_inset
y
-\begin_inset Formula $U_{0}:=\phi^{-1}({\cal U}\setminus\ell)$
+\begin_inset Formula $U_{0}\coloneqq \phi^{-1}({\cal U}\setminus\ell)$
\end_inset
, entonces
@@ -1654,7 +1654,7 @@ Sean
\end_inset
dado por
-\begin_inset Formula $X(r,\theta):=\exp_{p_{0}}(\phi(r,\theta))$
+\begin_inset Formula $X(r,\theta)\coloneqq \exp_{p_{0}}(\phi(r,\theta))$
\end_inset
es una parametrización llamada
@@ -1710,7 +1710,7 @@ teorema
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $v_{\theta}:=(\cos\theta e_{1}+\sin\theta e_{2})$
+\begin_inset Formula $v_{\theta}\coloneqq (\cos\theta e_{1}+\sin\theta e_{2})$
\end_inset
, de modo que
@@ -1830,7 +1830,7 @@ Para un
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $\overline{X}(u,v):=\exp_{p_{0}}(ue_{1}+ve_{2})$
+\begin_inset Formula $\overline{X}(u,v)\coloneqq \exp_{p_{0}}(ue_{1}+ve_{2})$
\end_inset
la parametrización normal centrada en
@@ -1846,7 +1846,7 @@ Sean
\end_inset
los parámetros de su primera forma fundamental, como
-\begin_inset Formula $X(r,\theta)=\overline{X}(r_{\theta}):=\overline{X}(r\cos\theta,r\sin\theta)$
+\begin_inset Formula $X(r,\theta)=\overline{X}(r_{\theta})\coloneqq \overline{X}(r\cos\theta,r\sin\theta)$
\end_inset
, se tiene
@@ -1989,7 +1989,7 @@ Fijado
\end_inset
, sea
-\begin_inset Formula $u(r):=\sqrt{G(r,\theta)}$
+\begin_inset Formula $u(r)\coloneqq \sqrt{G(r,\theta)}$
\end_inset
, de modo que
@@ -2212,11 +2212,11 @@ Demostración:
\end_inset
,
-\begin_inset Formula $V_{1}:=D(p_{1},\varepsilon)$
+\begin_inset Formula $V_{1}\coloneqq D(p_{1},\varepsilon)$
\end_inset
y
-\begin_inset Formula $V_{2}:=D(p_{2},\varepsilon)$
+\begin_inset Formula $V_{2}\coloneqq D(p_{2},\varepsilon)$
\end_inset
, entonces
@@ -2252,11 +2252,11 @@ Sean ahora
\end_inset
una isometría lineal dada por
-\begin_inset Formula $\tilde{\varphi}(e_{1}):=f_{1}$
+\begin_inset Formula $\tilde{\varphi}(e_{1})\coloneqq f_{1}$
\end_inset
y
-\begin_inset Formula $\tilde{\varphi}(e_{2}):=f_{2}$
+\begin_inset Formula $\tilde{\varphi}(e_{2})\coloneqq f_{2}$
\end_inset
, entonces