aboutsummaryrefslogtreecommitdiff
path: root/ggs/n6.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ggs/n6.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'ggs/n6.lyx')
-rw-r--r--ggs/n6.lyx18
1 files changed, 9 insertions, 9 deletions
diff --git a/ggs/n6.lyx b/ggs/n6.lyx
index d6b961e..7993f48 100644
--- a/ggs/n6.lyx
+++ b/ggs/n6.lyx
@@ -102,7 +102,7 @@ variación
\end_inset
con
-\begin_inset Formula $\phi_{0}(u):=\phi(u,0)=\alpha(u)$
+\begin_inset Formula $\phi_{0}(u)\coloneqq \phi(u,0)=\alpha(u)$
\end_inset
para todo
@@ -118,7 +118,7 @@ Para
\end_inset
, llamamos
-\begin_inset Formula $\alpha_{t}:=(u\mapsto\phi(u,t)):[a,b]\to S$
+\begin_inset Formula $\alpha_{t}\coloneqq (u\mapsto\phi(u,t)):[a,b]\to S$
\end_inset
y
@@ -139,7 +139,7 @@ curvas de la variación
\end_inset
, llamamos
-\begin_inset Formula $\beta_{u}:=(t\mapsto\phi(u,t)):(-\varepsilon,\varepsilon)\to S$
+\begin_inset Formula $\beta_{u}\coloneqq (t\mapsto\phi(u,t)):(-\varepsilon,\varepsilon)\to S$
\end_inset
y
@@ -269,7 +269,7 @@ funcional longitud de arco
\end_inset
dada por
-\begin_inset Formula $L(t):=L(\alpha_{t})$
+\begin_inset Formula $L(t)\coloneqq L(\alpha_{t})$
\end_inset
.
@@ -422,7 +422,7 @@ de modo que
sea lo mayor posible.
Si
-\begin_inset Formula $\varepsilon_{0}:=\inf_{u[a,b]}\delta_{u}=0$
+\begin_inset Formula $\varepsilon_{0}\coloneqq \inf_{u[a,b]}\delta_{u}=0$
\end_inset
, entonces existe una sucesión
@@ -732,7 +732,7 @@ Caracterización variaciones de las geodésicas:
\end_inset
el campo tangente dado por
-\begin_inset Formula $Z(s):=-(s^{2}-s(a+b)+ab)\frac{D\alpha'}{ds}(s)$
+\begin_inset Formula $Z(s)\coloneqq -(s^{2}-s(a+b)+ab)\frac{D\alpha'}{ds}(s)$
\end_inset
, si existe una variación
@@ -761,7 +761,7 @@ Caracterización variaciones de las geodésicas:
.
Además,
-\begin_inset Formula $f(s):=s^{2}-s(a+b)+ab$
+\begin_inset Formula $f(s)\coloneqq s^{2}-s(a+b)+ab$
\end_inset
es una parábola que vale 0 en
@@ -866,7 +866,7 @@ No recuerdo haber visto este teorema.
\end_inset
existe
-\begin_inset Formula $\varepsilon:=\min_{s\in[a,b]}\varepsilon_{s}>0$
+\begin_inset Formula $\varepsilon\coloneqq \min_{s\in[a,b]}\varepsilon_{s}>0$
\end_inset
,
@@ -882,7 +882,7 @@ No recuerdo haber visto este teorema.
\end_inset
como
-\begin_inset Formula $\phi(s,t):=\gamma_{Z(s)}(t)$
+\begin_inset Formula $\phi(s,t)\coloneqq \gamma_{Z(s)}(t)$
\end_inset
.