diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /mne/n2.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'mne/n2.lyx')
| -rw-r--r-- | mne/n2.lyx | 18 |
1 files changed, 9 insertions, 9 deletions
@@ -106,7 +106,7 @@ paso \end_inset con -\begin_inset Formula $t_{i}:=a+hi$ +\begin_inset Formula $t_{i}\coloneqq a+hi$ \end_inset , aunque esto se suele calcular como @@ -134,11 +134,11 @@ El método de Euler \series default viene dado por -\begin_inset Formula $\omega_{0}:=x_{0}$ +\begin_inset Formula $\omega_{0}\coloneqq x_{0}$ \end_inset y -\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hf(t_{i},\omega_{i})$ +\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hf(t_{i},\omega_{i})$ \end_inset . @@ -204,7 +204,7 @@ Teorema de convergencia del método de Euler: \end_inset , -\begin_inset Formula $h:=\frac{b-a}{n}$ +\begin_inset Formula $h\coloneqq \frac{b-a}{n}$ \end_inset , @@ -241,7 +241,7 @@ con para dicho problema con redondeo, dado por \begin_inset Formula \[ -\left\{ \begin{aligned}\omega_{0} & \mid =x_{0}+\delta_{0},\\ +\left\{ \begin{aligned}\omega_{0} & :=x_{0}+\delta_{0},\\ \omega_{i+1} & :=\omega_{i}+hf(t_{i},\omega_{i})+\delta_{i+1}, \end{aligned} \right. @@ -258,7 +258,7 @@ con cada \end_inset , y -\begin_inset Formula $x_{i}:=x(t_{i})$ +\begin_inset Formula $x_{i}\coloneqq x(t_{i})$ \end_inset para cada @@ -451,7 +451,7 @@ Como \end_deeper \begin_layout Enumerate -\begin_inset Formula $y_{i}:=2\xi_{2i}-\omega_{i}$ +\begin_inset Formula $y_{i}\coloneqq 2\xi_{2i}-\omega_{i}$ \end_inset es un método de paso fijo @@ -517,11 +517,11 @@ El método de Euler es el método de Taylor de orden 1. \begin_layout Standard Dado un método de paso fijo de la forma -\begin_inset Formula $\omega_{0}:=\alpha$ +\begin_inset Formula $\omega_{0}\coloneqq \alpha$ \end_inset , -\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$ +\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i})$ \end_inset , llamamos |
