aboutsummaryrefslogtreecommitdiff
path: root/mne
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /mne
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'mne')
-rw-r--r--mne/n1.lyx4
-rw-r--r--mne/n2.lyx18
-rw-r--r--mne/n3.lyx8
-rw-r--r--mne/n4.lyx28
-rw-r--r--mne/n5.lyx12
5 files changed, 35 insertions, 35 deletions
diff --git a/mne/n1.lyx b/mne/n1.lyx
index bc4abd2..fb28c61 100644
--- a/mne/n1.lyx
+++ b/mne/n1.lyx
@@ -182,7 +182,7 @@ Como
teorema
\series default
, si
-\begin_inset Formula $D:=[a,b]\times\mathbb{R}$
+\begin_inset Formula $D\coloneqq [a,b]\times\mathbb{R}$
\end_inset
,
@@ -301,7 +301,7 @@ Si el polinomio interpolador de
\end_inset
, llamamos
-\begin_inset Formula $f[x_{0},\dots,x_{n}]:=a_{n}$
+\begin_inset Formula $f[x_{0},\dots,x_{n}]\coloneqq a_{n}$
\end_inset
.
diff --git a/mne/n2.lyx b/mne/n2.lyx
index 44b1b3a..8e04b88 100644
--- a/mne/n2.lyx
+++ b/mne/n2.lyx
@@ -106,7 +106,7 @@ paso
\end_inset
con
-\begin_inset Formula $t_{i}:=a+hi$
+\begin_inset Formula $t_{i}\coloneqq a+hi$
\end_inset
, aunque esto se suele calcular como
@@ -134,11 +134,11 @@ El
método de Euler
\series default
viene dado por
-\begin_inset Formula $\omega_{0}:=x_{0}$
+\begin_inset Formula $\omega_{0}\coloneqq x_{0}$
\end_inset
y
-\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hf(t_{i},\omega_{i})$
+\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hf(t_{i},\omega_{i})$
\end_inset
.
@@ -204,7 +204,7 @@ Teorema de convergencia del método de Euler:
\end_inset
,
-\begin_inset Formula $h:=\frac{b-a}{n}$
+\begin_inset Formula $h\coloneqq \frac{b-a}{n}$
\end_inset
,
@@ -241,7 +241,7 @@ con
para dicho problema con redondeo, dado por
\begin_inset Formula
\[
-\left\{ \begin{aligned}\omega_{0} & \mid =x_{0}+\delta_{0},\\
+\left\{ \begin{aligned}\omega_{0} & :=x_{0}+\delta_{0},\\
\omega_{i+1} & :=\omega_{i}+hf(t_{i},\omega_{i})+\delta_{i+1},
\end{aligned}
\right.
@@ -258,7 +258,7 @@ con cada
\end_inset
, y
-\begin_inset Formula $x_{i}:=x(t_{i})$
+\begin_inset Formula $x_{i}\coloneqq x(t_{i})$
\end_inset
para cada
@@ -451,7 +451,7 @@ Como
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $y_{i}:=2\xi_{2i}-\omega_{i}$
+\begin_inset Formula $y_{i}\coloneqq 2\xi_{2i}-\omega_{i}$
\end_inset
es un método de paso fijo
@@ -517,11 +517,11 @@ El método de Euler es el método de Taylor de orden 1.
\begin_layout Standard
Dado un método de paso fijo de la forma
-\begin_inset Formula $\omega_{0}:=\alpha$
+\begin_inset Formula $\omega_{0}\coloneqq \alpha$
\end_inset
,
-\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$
+\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i})$
\end_inset
, llamamos
diff --git a/mne/n3.lyx b/mne/n3.lyx
index 2c12115..507713a 100644
--- a/mne/n3.lyx
+++ b/mne/n3.lyx
@@ -222,7 +222,7 @@ teorema
\end_inset
, sean
-\begin_inset Formula $h:=h_{i}$
+\begin_inset Formula $h\coloneqq h_{i}$
\end_inset
y
@@ -338,7 +338,7 @@ Dar un paso con
\begin_layout Enumerate
Obtener el error
-\begin_inset Formula $E:=\frac{2^{k}}{2^{k}-1}\Vert Y-\omega_{i+1}\Vert\approx\Vert z_{i}(t_{i+1})-\omega_{i+1}\Vert$
+\begin_inset Formula $E\coloneqq \frac{2^{k}}{2^{k}-1}\Vert Y-\omega_{i+1}\Vert\approx\Vert z_{i}(t_{i+1})-\omega_{i+1}\Vert$
\end_inset
.
@@ -374,11 +374,11 @@ Para ajustar el paso:
\begin_layout Enumerate
Calcular
-\begin_inset Formula $q:=\left(\frac{\varepsilon h}{2E}\right)^{1/k}$
+\begin_inset Formula $q\coloneqq \left(\frac{\varepsilon h}{2E}\right)^{1/k}$
\end_inset
y
-\begin_inset Formula $q':=\min\{4,\max\{0.1,q\}\}$
+\begin_inset Formula $q'\coloneqq \min\{4,\max\{0.1,q\}\}$
\end_inset
, y hacer
diff --git a/mne/n4.lyx b/mne/n4.lyx
index 9aed707..c480167 100644
--- a/mne/n4.lyx
+++ b/mne/n4.lyx
@@ -321,7 +321,7 @@ Consideremos un método multipaso de paso fijo que, para un problema en un
\end_inset
dada por
-\begin_inset Formula $\tau(h):=\max_{i=0}^{n_{h}}\Vert\tau_{i}(h)\Vert$
+\begin_inset Formula $\tau(h)\coloneqq \max_{i=0}^{n_{h}}\Vert\tau_{i}(h)\Vert$
\end_inset
, el método es
@@ -385,7 +385,7 @@ estable
\end_inset
, sea
-\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}:=(t_{hi},\omega_{hi})_{i=0}^{n_{h}}$
+\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}\coloneqq (t_{hi},\omega_{hi})_{i=0}^{n_{h}}$
\end_inset
, si se puede generar una solución
@@ -393,7 +393,7 @@ estable
\end_inset
con
-\begin_inset Formula $\tilde{\omega}_{i}:=\omega_{i}$
+\begin_inset Formula $\tilde{\omega}_{i}\coloneqq \omega_{i}$
\end_inset
para
@@ -468,7 +468,7 @@ Demostración:
\end_inset
los coeficientes del método y
-\begin_inset Formula $\varepsilon_{i}:=h\tau_{i}(h)$
+\begin_inset Formula $\varepsilon_{i}\coloneqq h\tau_{i}(h)$
\end_inset
, como
@@ -561,11 +561,11 @@ teorema
\end_inset
dado por
-\begin_inset Formula $\omega_{0}:=x(t_{0})$
+\begin_inset Formula $\omega_{0}\coloneqq x(t_{0})$
\end_inset
y
-\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$
+\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i},h)$
\end_inset
con
@@ -594,11 +594,11 @@ Fijado
\end_inset
dados por
-\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$
+\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i},h)$
\end_inset
y
-\begin_inset Formula $\tilde{\omega}_{i+1}:=\tilde{\omega}_{i}+hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i+1}$
+\begin_inset Formula $\tilde{\omega}_{i+1}\coloneqq \tilde{\omega}_{i}+hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i+1}$
\end_inset
para ciertos
@@ -641,7 +641,7 @@ Con esto, como
\end_inset
, llamando
-\begin_inset Formula $M:=(1+hL)^{n}$
+\begin_inset Formula $M\coloneqq (1+hL)^{n}$
\end_inset
,
@@ -806,7 +806,7 @@ donde los
polinomio característico
\series default
de la ecuación es
-\begin_inset Formula $P(\lambda):=\lambda^{m}-a_{m-1}\lambda^{m-1}-\dots-a_{1}\lambda-a_{0}$
+\begin_inset Formula $P(\lambda)\coloneqq \lambda^{m}-a_{m-1}\lambda^{m-1}-\dots-a_{1}\lambda-a_{0}$
\end_inset
.
@@ -840,7 +840,7 @@ Dados un método multipaso de paso fijo
\end_inset
y
-\begin_inset Formula $\omega_{i}:=\alpha_{i}$
+\begin_inset Formula $\omega_{i}\coloneqq \alpha_{i}$
\end_inset
para
@@ -950,11 +950,11 @@ begin{sloppypar}
\end_inset
Dados un método implícito
-\begin_inset Formula $\omega_{i}:=F(t_{i},h,\omega_{i-1},\dots,\omega_{i-m})$
+\begin_inset Formula $\omega_{i}\coloneqq F(t_{i},h,\omega_{i-1},\dots,\omega_{i-m})$
\end_inset
y uno explícito
-\begin_inset Formula $\omega_{i}:=G(t_{i},h,\omega_{i},\dots,\omega_{i-m})$
+\begin_inset Formula $\omega_{i}\coloneqq G(t_{i},h,\omega_{i},\dots,\omega_{i-m})$
\end_inset
, el
@@ -1072,7 +1072,7 @@ Sean
\begin_layout Standard
El método es de paso variable, ajustando el paso como en los métodos de
paso fijo pero con error
-\begin_inset Formula $E:=\frac{19}{270}\Vert\beta_{i}-\omega_{i}\Vert$
+\begin_inset Formula $E\coloneqq \frac{19}{270}\Vert\beta_{i}-\omega_{i}\Vert$
\end_inset
.
diff --git a/mne/n5.lyx b/mne/n5.lyx
index 79f6ad9..b771594 100644
--- a/mne/n5.lyx
+++ b/mne/n5.lyx
@@ -186,7 +186,7 @@ En general, con los métodos de un paso fijo en
\end_inset
, esto es
-\begin_inset Formula $Q(x):=\sum_{i=0}^{n}\frac{x^{i}}{i!}$
+\begin_inset Formula $Q(x)\coloneqq \sum_{i=0}^{n}\frac{x^{i}}{i!}$
\end_inset
.
@@ -362,7 +362,7 @@ El polinomio
\end_inset
tiene como única raíz
-\begin_inset Formula $\beta:=\frac{1}{1-h\lambda}$
+\begin_inset Formula $\beta\coloneqq \frac{1}{1-h\lambda}$
\end_inset
, y si
@@ -383,7 +383,7 @@ El polinomio
\end_deeper
\begin_layout Standard
Para implementarlo, sea
-\begin_inset Formula $F(\omega):=\omega-\omega_{i-1}-hf(t_{i},\omega)$
+\begin_inset Formula $F(\omega)\coloneqq \omega-\omega_{i-1}-hf(t_{i},\omega)$
\end_inset
, se trata de resolver
@@ -400,7 +400,7 @@ Para implementarlo, sea
\end_inset
, dada por
-\begin_inset Formula $\omega_{i}^{0}:=\omega_{i-1}$
+\begin_inset Formula $\omega_{i}^{0}\coloneqq \omega_{i-1}$
\end_inset
y
@@ -549,11 +549,11 @@ Dado un método a
\end_inset
llamamos
-\begin_inset Formula $\rho(z):=z^{m}-a_{m-1}z^{m-1}-\dots-a_{1}z-a_{0}$
+\begin_inset Formula $\rho(z)\coloneqq z^{m}-a_{m-1}z^{m-1}-\dots-a_{1}z-a_{0}$
\end_inset
y
-\begin_inset Formula $\sigma(z):=b_{m}z^{m}+\dots+b_{1}z+b_{0}$
+\begin_inset Formula $\sigma(z)\coloneqq b_{m}z^{m}+\dots+b_{1}z+b_{0}$
\end_inset
.