aboutsummaryrefslogtreecommitdiff
path: root/tem/n1.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /tem/n1.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'tem/n1.lyx')
-rw-r--r--tem/n1.lyx16
1 files changed, 8 insertions, 8 deletions
diff --git a/tem/n1.lyx b/tem/n1.lyx
index 39659d7..e3a9d97 100644
--- a/tem/n1.lyx
+++ b/tem/n1.lyx
@@ -149,7 +149,7 @@ abiertos
cerrados
\series default
a los complementarios de los abiertos:
-\begin_inset Formula ${\cal C_{T}}:={\cal C}:=\{X\backslash A\}_{A\in{\cal T}}$
+\begin_inset Formula ${\cal C_{T}}\coloneqq {\cal C}\coloneqq \{X\backslash A\}_{A\in{\cal T}}$
\end_inset
.
@@ -370,7 +370,7 @@ La
topología discreta
\series default
:
-\begin_inset Formula ${\cal T}_{D}:={\cal P}(X)$
+\begin_inset Formula ${\cal T}_{D}\coloneqq {\cal P}(X)$
\end_inset
, la topología más grande que se puede definir sobre
@@ -489,7 +489,7 @@ topología relativa
topología de subespacio
\series default
como
-\begin_inset Formula ${\cal T}|_{H}:={\cal T}_{H}:=\{A\cap H\}_{A\in{\cal T}}$
+\begin_inset Formula ${\cal T}|_{H}\coloneqq {\cal T}_{H}\coloneqq \{A\cap H\}_{A\in{\cal T}}$
\end_inset
.
@@ -671,7 +671,7 @@ Si
.
Pero si
-\begin_inset Formula $C:=X\backslash A$
+\begin_inset Formula $C\coloneqq X\backslash A$
\end_inset
, entonces
@@ -1381,7 +1381,7 @@ círculo
\end_inset
es el conjunto
-\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$
+\begin_inset Formula $C_{d}(p;r)\coloneqq C(p;r)\coloneqq \{x\in X\mid d(p,x)=r\}$
\end_inset
.
@@ -1402,7 +1402,7 @@ bola abierta
\end_inset
es el conjunto
-\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$
+\begin_inset Formula $B_{d}(p;r)\coloneqq B(p;r)\coloneqq \{x\in X\mid d(p,x)<r\}$
\end_inset
, y la
@@ -1422,7 +1422,7 @@ bola cerrada
\end_inset
es el conjunto
-\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$
+\begin_inset Formula $\overline{B}_{d}(p;r)\coloneqq \overline{B}(p;r)\coloneqq B[p;r]\coloneqq \{x\in X\mid d(p,x)\leq r\}$
\end_inset
.
@@ -1707,7 +1707,7 @@ Demostración:
.
Ahora bien, si tomamos
-\begin_inset Formula $r:=\min\{r_{1},\dots,r_{n}\}$
+\begin_inset Formula $r\coloneqq \min\{r_{1},\dots,r_{n}\}$
\end_inset
, vemos que