aboutsummaryrefslogtreecommitdiff
path: root/ga/n4.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ga/n4.lyx')
-rw-r--r--ga/n4.lyx20
1 files changed, 10 insertions, 10 deletions
diff --git a/ga/n4.lyx b/ga/n4.lyx
index 23c1d2f..accc8be 100644
--- a/ga/n4.lyx
+++ b/ga/n4.lyx
@@ -745,7 +745,7 @@ Si
\end_inset
es una familia de grupos,
-\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$
+\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$
\end_inset
es un subgrupo de
@@ -773,7 +773,7 @@ centralizador
\end_inset
es el subgrupo
-\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$
+\begin_inset Formula $C_{G}(x):=\{g\in G\mid gx=xg\}$
\end_inset
, y el
@@ -785,7 +785,7 @@ centro
\end_inset
es el subgrupo abeliano
-\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
+\begin_inset Formula $Z(G):=\{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
\end_inset
.
@@ -2973,7 +2973,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid g\cdot x=x\}$
\end_inset
.
@@ -3014,7 +3014,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid x\cdot g=x\}$
\end_inset
.
@@ -3050,7 +3050,7 @@ acción por translación a la izquierda
y
\begin_inset Formula
\[
-\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
+\text{Estab}_{G}(xH)=\{g\in G\mid gxH=xH\}=\{g\in G\mid x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
\]
\end_inset
@@ -3170,7 +3170,7 @@ normalizador
\end_inset
es
-\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$
+\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$
\end_inset
, el mayor subgrupo de
@@ -3393,12 +3393,12 @@ status open
\begin_layout Plain Layout
Si la acción es por la izquierda,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}\mid h\cdot x=x\}=\{p\in G\mid g^{-1}pg\cdot x=x\}=\{p\in G\mid p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
\end_inset
.
Si es por la derecha,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$
\end_inset
.
@@ -3606,7 +3606,7 @@ status open
Demostración:
\series default
Sea
-\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$
+\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$
\end_inset
,