aboutsummaryrefslogtreecommitdiff
path: root/ggs
diff options
context:
space:
mode:
Diffstat (limited to 'ggs')
-rw-r--r--ggs/n2.lyx8
-rw-r--r--ggs/n3.lyx10
-rw-r--r--ggs/n4.lyx4
-rw-r--r--ggs/n5.lyx2
-rw-r--r--ggs/n7.lyx2
5 files changed, 13 insertions, 13 deletions
diff --git a/ggs/n2.lyx b/ggs/n2.lyx
index f18290a..09e8555 100644
--- a/ggs/n2.lyx
+++ b/ggs/n2.lyx
@@ -569,7 +569,7 @@ intervalo maximal de existencia
Demostración:
\series default
Sea
-\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha):\alpha:I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
+\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
\end_inset
.
@@ -669,7 +669,7 @@ Sean ahora
es abierto y, por el teorema del peine, también conexo, luego es un intervalo.
Sea
-\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}:\alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
+\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
\end_inset
, y queremos ver que
@@ -1401,7 +1401,7 @@ geodésicamente completa
\begin_layout Enumerate
Dado el plano
-\begin_inset Formula $S=\{p\in\mathbb{R}^{3}:\langle p,a\rangle=c\}$
+\begin_inset Formula $S=\{p\in\mathbb{R}^{3}\mid \langle p,a\rangle=c\}$
\end_inset
, la geodésica maximal de
@@ -1579,7 +1579,7 @@ Sean
\end_inset
,
-\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=r^{2}\}$
+\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$
\end_inset
un cilindro,
diff --git a/ggs/n3.lyx b/ggs/n3.lyx
index 4bad339..f553749 100644
--- a/ggs/n3.lyx
+++ b/ggs/n3.lyx
@@ -110,7 +110,7 @@ aplicación exponencial
\end_inset
donde
-\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S:1\in I_{v}\}$
+\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$
\end_inset
.
@@ -909,7 +909,7 @@ Sean
\end_inset
tal que
-\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S:\Vert v\Vert<r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -933,7 +933,7 @@ disco geodésico
\end_inset
cumple que
-\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S:\Vert v\Vert=r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -1099,7 +1099,7 @@ Sean
\end_inset
, luego
-\begin_inset Formula $t_{0}=\max\{t\in[a,b]:\alpha(t)=p_{0}\}<b$
+\begin_inset Formula $t_{0}=\max\{t\in[a,b]\mid \alpha(t)=p_{0}\}<b$
\end_inset
(pues
@@ -1422,7 +1422,7 @@ Finalmente, sea
es
\begin_inset Formula
\[
-A:=\{t\in(a,b):\Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]:\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
+A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid \alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
\]
\end_inset
diff --git a/ggs/n4.lyx b/ggs/n4.lyx
index a8a29a2..f6e22f9 100644
--- a/ggs/n4.lyx
+++ b/ggs/n4.lyx
@@ -258,7 +258,7 @@ Demostración:
\begin_layout Standard
Primero vemos que
-\begin_inset Formula $A:=\{q\in S:\Omega(p,q)\neq\emptyset\}=S$
+\begin_inset Formula $A:=\{q\in S\mid \Omega(p,q)\neq\emptyset\}=S$
\end_inset
viendo que es abierto, cerrado y no vacío.
@@ -750,7 +750,7 @@ Queremos ver que
\end_inset
, existe
-\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]:\alpha(t)\notin D(p,r^{*})\}$
+\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]\mid \alpha(t)\notin D(p,r^{*})\}$
\end_inset
, pero
diff --git a/ggs/n5.lyx b/ggs/n5.lyx
index f56b96a..00374b2 100644
--- a/ggs/n5.lyx
+++ b/ggs/n5.lyx
@@ -229,7 +229,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $A:=\{t\in[0,1]:\tilde{\alpha}(t)=tw\}$
+\begin_inset Formula $A:=\{t\in[0,1]\mid \tilde{\alpha}(t)=tw\}$
\end_inset
, queremos ver que
diff --git a/ggs/n7.lyx b/ggs/n7.lyx
index 0ecec27..142e739 100644
--- a/ggs/n7.lyx
+++ b/ggs/n7.lyx
@@ -273,7 +273,7 @@ soporte
\end_inset
es
-\begin_inset Formula $\text{sop}f:=\overline{\{x\in D:f(x)\neq0\}}$
+\begin_inset Formula $\text{sop}f:=\overline{\{x\in D\mid f(x)\neq0\}}$
\end_inset
.