diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /cyn/n1.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'cyn/n1.lyx')
| -rw-r--r-- | cyn/n1.lyx | 914 |
1 files changed, 914 insertions, 0 deletions
diff --git a/cyn/n1.lyx b/cyn/n1.lyx new file mode 100644 index 0000000..21cc0c8 --- /dev/null +++ b/cyn/n1.lyx @@ -0,0 +1,914 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Podemos definir conjuntos: +\end_layout + +\begin_layout Itemize + +\series bold +Por extensión: +\series default + +\begin_inset Formula $A=\{X_{1},\dots,X_{n},\dots\}$ +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Por comprehensión: +\series default + +\begin_inset Formula $A=\{X\in B|p(X)\text{ (es verdadera)}\}$ +\end_inset + +. + Si es obvio quién es +\begin_inset Formula $B$ +\end_inset + +, se puede omitir. +\end_layout + +\begin_layout Standard +Cualquiera de ambas escrituras determina un único conjunto. + +\series bold +Paradoja de Russell: +\series default + si +\begin_inset Formula $\mathcal{U}$ +\end_inset + + es la colección de todos los conjuntos y +\begin_inset Formula $A=\{x\in{\cal U}|x\notin x\}$ +\end_inset + +, entonces +\begin_inset Formula $A\in A$ +\end_inset + + si y sólo si +\begin_inset Formula $A\notin A$ +\end_inset + +. + Lo que ocurre es que +\begin_inset Formula ${\cal U}$ +\end_inset + + no es un conjunto. +\end_layout + +\begin_layout Itemize + +\series bold +Pertenencia: +\series default + +\begin_inset Formula $a\in A$ +\end_inset + +. + Contrario: +\begin_inset Formula $a\notin A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Inclusión: +\series default + +\begin_inset Formula $A$ +\end_inset + + está contenido, o es un subconjunto, de +\series bold + +\begin_inset Formula $B$ +\end_inset + + +\series default +: +\begin_inset Formula $A\subseteq B:\iff(a\in A\implies a\in B)$ +\end_inset + +. + Es transitiva: +\begin_inset Formula $A\subseteq B\land B\subseteq C\implies A\subseteq C$ +\end_inset + +. + Contrario: +\begin_inset Formula $A\nsubseteq B$ +\end_inset + +. + Subconjunto estricto: +\begin_inset Formula $A\subsetneq B\iff A\subseteq B\land A\neq B$ +\end_inset + +. + +\begin_inset Formula $A\subset B$ +\end_inset + + es ambiguo, aunque se suele usar como +\begin_inset Formula $A\subseteq B$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Igualdad: +\series default + +\begin_inset Formula $A=B:\iff(a\in A\iff a\in B)\iff A\subseteq B\land B\subseteq A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Múltiplos de un número +\begin_inset Formula $n$ +\end_inset + + como +\begin_inset Formula $n\mathbb{Z}=\{nt|t\in\mathbb{Z}\}=\{nt\}_{t\in\mathbb{Z}}$ +\end_inset + +. + Así, +\begin_inset Formula $m\in n\mathbb{Z}\implies m\mathbb{Z}\subseteq n\mathbb{Z}$ +\end_inset + +. + Relación +\begin_inset Quotes cld +\end_inset + + +\begin_inset Formula $m$ +\end_inset + + divide a +\begin_inset Formula $n$ +\end_inset + + +\begin_inset Quotes crd +\end_inset + + o +\begin_inset Quotes cld +\end_inset + + +\begin_inset Formula $n$ +\end_inset + + es múltiplo de +\begin_inset Formula $m$ +\end_inset + + +\begin_inset Quotes crd +\end_inset + +: +\begin_inset Formula $m|n\iff\exists t\in\mathbb{Z}:n=tm$ +\end_inset + +. + Si +\begin_inset Formula $A=\{x\in B|p(x)\}$ +\end_inset + + y +\begin_inset Formula $A'=\{x\in B|p'(x)\}$ +\end_inset + +, entonces +\begin_inset Formula $(p(x)\implies p'(x))\implies A\subseteq A'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +conjunto vacío +\series default + es aquel que no tiene elementos. + Si +\begin_inset Formula $A$ +\end_inset + + es vacío, entonces +\begin_inset Formula $A\subseteq B$ +\end_inset + +, dado que si +\begin_inset Formula $A\nsubseteq B$ +\end_inset + + significaría que +\begin_inset Formula $\exists a\in A:a\notin B$ +\end_inset + +, por lo que +\begin_inset Formula $A$ +\end_inset + + no estaría vacío. + De aquí podemos deducir que solo hay un conjunto vacío, y lo llamamos +\begin_inset Formula $\emptyset$ +\end_inset + +. + +\begin_inset Formula $A=\emptyset:\iff\forall x,x\notin A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El conjunto +\begin_inset Formula ${\cal P}(A)=\{B|B\subseteq A\}$ +\end_inset + + es el conjunto de las +\series bold +partes de +\begin_inset Formula $A$ +\end_inset + + +\series default + o el conjunto +\series bold +potencia +\series default + de +\begin_inset Formula $A$ +\end_inset + +. + También se llama +\begin_inset Formula $2^{A}$ +\end_inset + + porque si +\begin_inset Formula $A$ +\end_inset + + tiene +\begin_inset Formula $n$ +\end_inset + + elementos, +\begin_inset Formula ${\cal P}(A)$ +\end_inset + + tiene +\begin_inset Formula $2^{n}$ +\end_inset + +, de lo que deducimos que +\begin_inset Formula $A\neq{\cal P}(A)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Operaciones con subconjuntos +\end_layout + +\begin_layout Standard +Los +\series bold +diagramas de Venn +\series default + aportan una mejor comprensión de los conjuntos y sus operaciones. + Los conjuntos se representan como formas (normalmente círculos y cuadrados), + que pueden ir acompañados del nombre del conjunto, y se colorea la parte + deseada. + Operaciones: +\end_layout + +\begin_layout Itemize + +\series bold +Unión: +\series default + +\begin_inset Formula $A\cup B=\{x|x\in A\lor x\in B\}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Intersección: +\series default + +\begin_inset Formula $A\cap B=\{x|x\in A\land x\in B\}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son +\series bold +disjuntos +\series default + si +\begin_inset Formula $A\cap B=\emptyset$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Itemize + +\series bold +Diferencia de conjuntos: +\series default + +\begin_inset Formula $A\backslash B=\{x|x\in A\land x\notin B\}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Complemento: +\series default + Si +\begin_inset Formula $A\subseteq U$ +\end_inset + +, siendo +\begin_inset Formula $U$ +\end_inset + + un +\begin_inset Quotes cld +\end_inset + +universo +\begin_inset Quotes crd +\end_inset + + en el contexto en el que operamos, el complemento de +\begin_inset Formula $A$ +\end_inset + + en +\begin_inset Formula $U$ +\end_inset + + se define como +\begin_inset Formula $A^{\complement}=\overline{A}=U\backslash A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\cap B\subseteq A\subseteq A\cup B$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall A\subseteq B,A\cup X\subseteq B\cup X\land A\cap X\subseteq B\cap X$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\subseteq C\land B\subseteq C\implies(A\cup B)\subseteq C$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $(A\cap B)\cap C=A\cap(B\cap C)$ +\end_inset + +; +\begin_inset Formula $(A\cup B)\cup C=A\cup(B\cup C)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\subseteq B\iff A\cup B=B\iff A\cap B=A$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\cup\emptyset=A$ +\end_inset + +; +\begin_inset Formula $A\cap\emptyset=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $X\subseteq(A\cap B)\iff(X\subseteq A)\land(X\subseteq B)$ +\end_inset + +; +\begin_inset Formula $(A\cup B)\subseteq X\iff(A\subseteq X)\land(B\subseteq X)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\cap(B\cup C)=(A\cap B)\cup(A\cap C)$ +\end_inset + +; +\begin_inset Formula $A\cup(B\cap C)=(A\cup B)\cap(A\cup C)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $(A\backslash B)\cup(B\backslash A)=(A\cup B)\backslash(A\cap B)$ +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Leyes de Morgan: +\series default + +\begin_inset Formula $(A\cap B)^{\complement}=A^{\complement}\cup B^{\complement}$ +\end_inset + +; +\begin_inset Formula $(A\cup B)^{\complement}=A^{\complement}\cap B^{\complement}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Familias de conjuntos +\end_layout + +\begin_layout Standard +Una familia de conjuntos es una colección +\begin_inset Formula $\{A_{i}|i\in I\}$ +\end_inset + + donde +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $A_{i}$ +\end_inset + + son conjuntos. + Si todos los elementos son diferentes, tenemos un conjunto. + Algunas definiciones: +\end_layout + +\begin_layout Itemize + +\series bold +Unión arbitraria: +\series default + +\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}:x\in A\}$ +\end_inset + +; +\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I:x\in A_{i}\}$ +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Intersección arbitraria: +\series default + +\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}:x\in A\}$ +\end_inset + +; +\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I:x\in A_{i}\}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\cap{\cal C}\subseteq A\subseteq\cup{\cal C}\forall A\in{\cal C}$ +\end_inset + +; +\begin_inset Formula $\cap A_{i}\subseteq A_{j}\subseteq\cup A_{i}\forall j\in I$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\subseteq\cap{\cal C}\iff X\subseteq A\forall A\in{\cal C}$ +\end_inset + +; +\begin_inset Formula $\cup{\cal C}\subseteq X\iff A\subseteq X\forall A\in{\cal C}$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\cup_{i\in I}(A\cap B_{i})=A\cap(\cup_{i\in I}B_{i})$ +\end_inset + +; +\begin_inset Formula $\cap_{i\in I}(A\cup B_{i})=A\cup(\cap_{i\in I}B_{i})$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $x\in\cup_{i\in I}(A\cap B_{i})\implies\exists i\in I:x\in(A\cap B_{i})\implies(x\in A)\land(x\in B_{i}\subseteq\cup B_{i})$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $x\in A\cap(\cup_{i\in I}B_{i})\implies\exists i:(x\in A\land x\in B_{i})\implies x\in\cup(A\cap B_{i})$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $(\cap A_{i})^{\complement}=\cup A_{i}^{\complement}$ +\end_inset + +; +\begin_inset Formula $(\cup A_{i})^{\complement}=\cap A_{i}^{\complement}$ +\end_inset + + +\end_layout + +\begin_layout Section +Pares ordenados, producto cartesiano y relaciones binarias +\end_layout + +\begin_layout Standard +El +\series bold +par ordenado +\series default + o +\series bold +pareja ordenada +\series default + formada por +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + + es +\begin_inset Formula $(a,b)=\{\{a\},\{a,b\}\}$ +\end_inset + +. + Así, +\begin_inset Formula $(a,b)=(c,d)\iff a=c\land b=d$ +\end_inset + +. + El +\series bold +producto cartesiano +\series default + de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + es +\begin_inset Formula $A\times B=\{(a,b)|a\in A\land b\in B\}$ +\end_inset + +. + Este no es asociativo, pues en general, +\begin_inset Formula $(A\times B)\times C\neq A\times(B\times C)$ +\end_inset + +, pero son biyectivos. + Por ahora no tenemos descripción en términos de conjuntos para la expresión + +\begin_inset Formula $(a,b,c)$ +\end_inset + +. + Propiedades del producto cartesiano: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\times\emptyset=\emptyset\times A=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\times(B\cup C)=(A\times B)\cup(A\times C)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\times(B\cap C)=(A\times B)\cap(A\times C)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Una +\series bold +relación binaria +\series default + o +\series bold +correspondencia +\series default + entre elementos de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + es un subconjunto +\begin_inset Formula $R\subseteq A\times B$ +\end_inset + +. + Si +\begin_inset Formula $(a,b)\in R$ +\end_inset + +, decimos que +\begin_inset Formula $a$ +\end_inset + + está relacionado con +\begin_inset Formula $b$ +\end_inset + +, escrito +\begin_inset Formula $aRb$ +\end_inset + +. + Si +\begin_inset Formula $A=B$ +\end_inset + +, tenemos una relación en +\begin_inset Formula $A$ +\end_inset + +. + Definiciones: +\end_layout + +\begin_layout Itemize + +\series bold +Conjunto inicial: +\series default + +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Conjunto final: +\series default + +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Dominio: +\series default + +\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B:(a,b)\in R\}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Imagen: +\series default + +\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A:(a,b)\in R\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos representar las relaciones en gráficas planas. +\end_layout + +\end_body +\end_document |
