diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /cyn | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'cyn')
| -rw-r--r-- | cyn/n.lyx | 237 | ||||
| -rw-r--r-- | cyn/n1.lyx | 914 | ||||
| -rw-r--r-- | cyn/n2.lyx | 1510 | ||||
| -rw-r--r-- | cyn/n3.lyx | 725 | ||||
| -rw-r--r-- | cyn/n4.lyx | 374 | ||||
| -rw-r--r-- | cyn/n5.lyx | 2359 | ||||
| -rw-r--r-- | cyn/n7.lyx | 2681 | ||||
| -rw-r--r-- | cyn/n8.lyx | 954 |
8 files changed, 9754 insertions, 0 deletions
diff --git a/cyn/n.lyx b/cyn/n.lyx new file mode 100644 index 0000000..56a3b06 --- /dev/null +++ b/cyn/n.lyx @@ -0,0 +1,237 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Conjuntos y números +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2017} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Curso de conjuntos y números: Apuntes, Juan Jacobo Simón Pinero (Curso 2017–2018 +). +\end_layout + +\begin_layout Chapter +Conjuntos y elementos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Aplicaciones +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n2.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Órdenes en conjuntos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n3.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Relaciones de equivalencia +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Conjuntos numéricos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +El anillo de los números enteros +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n7.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Polinomios +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n8.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/cyn/n1.lyx b/cyn/n1.lyx new file mode 100644 index 0000000..21cc0c8 --- /dev/null +++ b/cyn/n1.lyx @@ -0,0 +1,914 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Podemos definir conjuntos: +\end_layout + +\begin_layout Itemize + +\series bold +Por extensión: +\series default + +\begin_inset Formula $A=\{X_{1},\dots,X_{n},\dots\}$ +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Por comprehensión: +\series default + +\begin_inset Formula $A=\{X\in B|p(X)\text{ (es verdadera)}\}$ +\end_inset + +. + Si es obvio quién es +\begin_inset Formula $B$ +\end_inset + +, se puede omitir. +\end_layout + +\begin_layout Standard +Cualquiera de ambas escrituras determina un único conjunto. + +\series bold +Paradoja de Russell: +\series default + si +\begin_inset Formula $\mathcal{U}$ +\end_inset + + es la colección de todos los conjuntos y +\begin_inset Formula $A=\{x\in{\cal U}|x\notin x\}$ +\end_inset + +, entonces +\begin_inset Formula $A\in A$ +\end_inset + + si y sólo si +\begin_inset Formula $A\notin A$ +\end_inset + +. + Lo que ocurre es que +\begin_inset Formula ${\cal U}$ +\end_inset + + no es un conjunto. +\end_layout + +\begin_layout Itemize + +\series bold +Pertenencia: +\series default + +\begin_inset Formula $a\in A$ +\end_inset + +. + Contrario: +\begin_inset Formula $a\notin A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Inclusión: +\series default + +\begin_inset Formula $A$ +\end_inset + + está contenido, o es un subconjunto, de +\series bold + +\begin_inset Formula $B$ +\end_inset + + +\series default +: +\begin_inset Formula $A\subseteq B:\iff(a\in A\implies a\in B)$ +\end_inset + +. + Es transitiva: +\begin_inset Formula $A\subseteq B\land B\subseteq C\implies A\subseteq C$ +\end_inset + +. + Contrario: +\begin_inset Formula $A\nsubseteq B$ +\end_inset + +. + Subconjunto estricto: +\begin_inset Formula $A\subsetneq B\iff A\subseteq B\land A\neq B$ +\end_inset + +. + +\begin_inset Formula $A\subset B$ +\end_inset + + es ambiguo, aunque se suele usar como +\begin_inset Formula $A\subseteq B$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Igualdad: +\series default + +\begin_inset Formula $A=B:\iff(a\in A\iff a\in B)\iff A\subseteq B\land B\subseteq A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Múltiplos de un número +\begin_inset Formula $n$ +\end_inset + + como +\begin_inset Formula $n\mathbb{Z}=\{nt|t\in\mathbb{Z}\}=\{nt\}_{t\in\mathbb{Z}}$ +\end_inset + +. + Así, +\begin_inset Formula $m\in n\mathbb{Z}\implies m\mathbb{Z}\subseteq n\mathbb{Z}$ +\end_inset + +. + Relación +\begin_inset Quotes cld +\end_inset + + +\begin_inset Formula $m$ +\end_inset + + divide a +\begin_inset Formula $n$ +\end_inset + + +\begin_inset Quotes crd +\end_inset + + o +\begin_inset Quotes cld +\end_inset + + +\begin_inset Formula $n$ +\end_inset + + es múltiplo de +\begin_inset Formula $m$ +\end_inset + + +\begin_inset Quotes crd +\end_inset + +: +\begin_inset Formula $m|n\iff\exists t\in\mathbb{Z}:n=tm$ +\end_inset + +. + Si +\begin_inset Formula $A=\{x\in B|p(x)\}$ +\end_inset + + y +\begin_inset Formula $A'=\{x\in B|p'(x)\}$ +\end_inset + +, entonces +\begin_inset Formula $(p(x)\implies p'(x))\implies A\subseteq A'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +conjunto vacío +\series default + es aquel que no tiene elementos. + Si +\begin_inset Formula $A$ +\end_inset + + es vacío, entonces +\begin_inset Formula $A\subseteq B$ +\end_inset + +, dado que si +\begin_inset Formula $A\nsubseteq B$ +\end_inset + + significaría que +\begin_inset Formula $\exists a\in A:a\notin B$ +\end_inset + +, por lo que +\begin_inset Formula $A$ +\end_inset + + no estaría vacío. + De aquí podemos deducir que solo hay un conjunto vacío, y lo llamamos +\begin_inset Formula $\emptyset$ +\end_inset + +. + +\begin_inset Formula $A=\emptyset:\iff\forall x,x\notin A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El conjunto +\begin_inset Formula ${\cal P}(A)=\{B|B\subseteq A\}$ +\end_inset + + es el conjunto de las +\series bold +partes de +\begin_inset Formula $A$ +\end_inset + + +\series default + o el conjunto +\series bold +potencia +\series default + de +\begin_inset Formula $A$ +\end_inset + +. + También se llama +\begin_inset Formula $2^{A}$ +\end_inset + + porque si +\begin_inset Formula $A$ +\end_inset + + tiene +\begin_inset Formula $n$ +\end_inset + + elementos, +\begin_inset Formula ${\cal P}(A)$ +\end_inset + + tiene +\begin_inset Formula $2^{n}$ +\end_inset + +, de lo que deducimos que +\begin_inset Formula $A\neq{\cal P}(A)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Operaciones con subconjuntos +\end_layout + +\begin_layout Standard +Los +\series bold +diagramas de Venn +\series default + aportan una mejor comprensión de los conjuntos y sus operaciones. + Los conjuntos se representan como formas (normalmente círculos y cuadrados), + que pueden ir acompañados del nombre del conjunto, y se colorea la parte + deseada. + Operaciones: +\end_layout + +\begin_layout Itemize + +\series bold +Unión: +\series default + +\begin_inset Formula $A\cup B=\{x|x\in A\lor x\in B\}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Intersección: +\series default + +\begin_inset Formula $A\cap B=\{x|x\in A\land x\in B\}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son +\series bold +disjuntos +\series default + si +\begin_inset Formula $A\cap B=\emptyset$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Itemize + +\series bold +Diferencia de conjuntos: +\series default + +\begin_inset Formula $A\backslash B=\{x|x\in A\land x\notin B\}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Complemento: +\series default + Si +\begin_inset Formula $A\subseteq U$ +\end_inset + +, siendo +\begin_inset Formula $U$ +\end_inset + + un +\begin_inset Quotes cld +\end_inset + +universo +\begin_inset Quotes crd +\end_inset + + en el contexto en el que operamos, el complemento de +\begin_inset Formula $A$ +\end_inset + + en +\begin_inset Formula $U$ +\end_inset + + se define como +\begin_inset Formula $A^{\complement}=\overline{A}=U\backslash A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\cap B\subseteq A\subseteq A\cup B$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall A\subseteq B,A\cup X\subseteq B\cup X\land A\cap X\subseteq B\cap X$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\subseteq C\land B\subseteq C\implies(A\cup B)\subseteq C$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $(A\cap B)\cap C=A\cap(B\cap C)$ +\end_inset + +; +\begin_inset Formula $(A\cup B)\cup C=A\cup(B\cup C)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\subseteq B\iff A\cup B=B\iff A\cap B=A$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\cup\emptyset=A$ +\end_inset + +; +\begin_inset Formula $A\cap\emptyset=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $X\subseteq(A\cap B)\iff(X\subseteq A)\land(X\subseteq B)$ +\end_inset + +; +\begin_inset Formula $(A\cup B)\subseteq X\iff(A\subseteq X)\land(B\subseteq X)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\cap(B\cup C)=(A\cap B)\cup(A\cap C)$ +\end_inset + +; +\begin_inset Formula $A\cup(B\cap C)=(A\cup B)\cap(A\cup C)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $(A\backslash B)\cup(B\backslash A)=(A\cup B)\backslash(A\cap B)$ +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Leyes de Morgan: +\series default + +\begin_inset Formula $(A\cap B)^{\complement}=A^{\complement}\cup B^{\complement}$ +\end_inset + +; +\begin_inset Formula $(A\cup B)^{\complement}=A^{\complement}\cap B^{\complement}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Familias de conjuntos +\end_layout + +\begin_layout Standard +Una familia de conjuntos es una colección +\begin_inset Formula $\{A_{i}|i\in I\}$ +\end_inset + + donde +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $A_{i}$ +\end_inset + + son conjuntos. + Si todos los elementos son diferentes, tenemos un conjunto. + Algunas definiciones: +\end_layout + +\begin_layout Itemize + +\series bold +Unión arbitraria: +\series default + +\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}:x\in A\}$ +\end_inset + +; +\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I:x\in A_{i}\}$ +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Intersección arbitraria: +\series default + +\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}:x\in A\}$ +\end_inset + +; +\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I:x\in A_{i}\}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\cap{\cal C}\subseteq A\subseteq\cup{\cal C}\forall A\in{\cal C}$ +\end_inset + +; +\begin_inset Formula $\cap A_{i}\subseteq A_{j}\subseteq\cup A_{i}\forall j\in I$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\subseteq\cap{\cal C}\iff X\subseteq A\forall A\in{\cal C}$ +\end_inset + +; +\begin_inset Formula $\cup{\cal C}\subseteq X\iff A\subseteq X\forall A\in{\cal C}$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\cup_{i\in I}(A\cap B_{i})=A\cap(\cup_{i\in I}B_{i})$ +\end_inset + +; +\begin_inset Formula $\cap_{i\in I}(A\cup B_{i})=A\cup(\cap_{i\in I}B_{i})$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $x\in\cup_{i\in I}(A\cap B_{i})\implies\exists i\in I:x\in(A\cap B_{i})\implies(x\in A)\land(x\in B_{i}\subseteq\cup B_{i})$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $x\in A\cap(\cup_{i\in I}B_{i})\implies\exists i:(x\in A\land x\in B_{i})\implies x\in\cup(A\cap B_{i})$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $(\cap A_{i})^{\complement}=\cup A_{i}^{\complement}$ +\end_inset + +; +\begin_inset Formula $(\cup A_{i})^{\complement}=\cap A_{i}^{\complement}$ +\end_inset + + +\end_layout + +\begin_layout Section +Pares ordenados, producto cartesiano y relaciones binarias +\end_layout + +\begin_layout Standard +El +\series bold +par ordenado +\series default + o +\series bold +pareja ordenada +\series default + formada por +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + + es +\begin_inset Formula $(a,b)=\{\{a\},\{a,b\}\}$ +\end_inset + +. + Así, +\begin_inset Formula $(a,b)=(c,d)\iff a=c\land b=d$ +\end_inset + +. + El +\series bold +producto cartesiano +\series default + de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + es +\begin_inset Formula $A\times B=\{(a,b)|a\in A\land b\in B\}$ +\end_inset + +. + Este no es asociativo, pues en general, +\begin_inset Formula $(A\times B)\times C\neq A\times(B\times C)$ +\end_inset + +, pero son biyectivos. + Por ahora no tenemos descripción en términos de conjuntos para la expresión + +\begin_inset Formula $(a,b,c)$ +\end_inset + +. + Propiedades del producto cartesiano: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\times\emptyset=\emptyset\times A=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\times(B\cup C)=(A\times B)\cup(A\times C)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A\times(B\cap C)=(A\times B)\cap(A\times C)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Una +\series bold +relación binaria +\series default + o +\series bold +correspondencia +\series default + entre elementos de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + es un subconjunto +\begin_inset Formula $R\subseteq A\times B$ +\end_inset + +. + Si +\begin_inset Formula $(a,b)\in R$ +\end_inset + +, decimos que +\begin_inset Formula $a$ +\end_inset + + está relacionado con +\begin_inset Formula $b$ +\end_inset + +, escrito +\begin_inset Formula $aRb$ +\end_inset + +. + Si +\begin_inset Formula $A=B$ +\end_inset + +, tenemos una relación en +\begin_inset Formula $A$ +\end_inset + +. + Definiciones: +\end_layout + +\begin_layout Itemize + +\series bold +Conjunto inicial: +\series default + +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Conjunto final: +\series default + +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Dominio: +\series default + +\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B:(a,b)\in R\}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Imagen: +\series default + +\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A:(a,b)\in R\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos representar las relaciones en gráficas planas. +\end_layout + +\end_body +\end_document diff --git a/cyn/n2.lyx b/cyn/n2.lyx new file mode 100644 index 0000000..386c747 --- /dev/null +++ b/cyn/n2.lyx @@ -0,0 +1,1510 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +aplicación +\series default + entre dos conjuntos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + es una relación +\begin_inset Formula $f\subseteq A\times B$ +\end_inset + + tal que +\begin_inset Formula $\forall a\in A,\exists!b\in B:(a,b)\in f$ +\end_inset + +. + Escribimos +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + o +\begin_inset Formula $A\overset{f}{\longrightarrow}B$ +\end_inset + +, y llamamos +\begin_inset Formula $b=f(a)\iff(a,b)\in f$ +\end_inset + +. + Por ejemplo, podemos definir +\begin_inset Formula $f:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $f(n)=n^{2}$ +\end_inset + +, de modo que +\begin_inset Formula $f=\{(n,n^{2}):n\in\mathbb{N}\}$ +\end_inset + +. + Si partimos de una igualdad y queremos interpretarla como la regla de una + aplicación, la llamamos +\series bold +función +\series default +. + Podemos representar una aplicación: +\end_layout + +\begin_layout Enumerate +Como dos conjuntos representados de forma similar a un diagrama de Euler-Venn, + en el que de cada elemento de +\begin_inset Formula $A$ +\end_inset + + parte una flecha hacia uno de +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Como una gráfica, en la que los elementos de +\begin_inset Formula $A$ +\end_inset + + se representan en el eje horizontal y los de +\begin_inset Formula $B$ +\end_inset + + en el eje vertical, y las relaciones se representan con puntos. +\end_layout + +\begin_layout Standard +Definimos: +\end_layout + +\begin_layout Itemize + +\series bold +Dominio +\series default + de +\begin_inset Formula $f$ +\end_inset + +: +\begin_inset Formula $\text{Dom}f=A$ +\end_inset + +, por lo que el término +\begin_inset Quotes cld +\end_inset + +conjunto inicial +\begin_inset Quotes crd +\end_inset + + no se usa. +\end_layout + +\begin_layout Itemize + +\series bold +Codominio +\series default + de +\begin_inset Formula $f$ +\end_inset + +: +\begin_inset Quotes cld +\end_inset + +Conjunto final +\begin_inset Quotes crd +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Imagen +\series default + o +\series bold +imagen directa +\series default + de +\begin_inset Formula $f$ +\end_inset + +: +\begin_inset Formula $\text{Im}f=f(A)=\{b\in B:\exists a:f(a)=b\}\subseteq B$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Regla de correspondencia +\series default + de +\begin_inset Formula $f$ +\end_inset + +: Igualdad +\begin_inset Formula $b=f(a)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $b=f(a)$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es +\emph on +una +\emph default + +\series bold +preimagen +\series default + de +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + es la +\series bold +imagen +\series default + de +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una +\series bold +ley de composición externa +\series default + es una aplicación +\begin_inset Formula $B\times A\overset{\circ}{\longrightarrow}A$ +\end_inset + +. + Una +\series bold +operación binaria +\series default + en +\begin_inset Formula $A$ +\end_inset + + es una aplicación +\begin_inset Formula $A\times A\overset{\circ}{\longrightarrow}A$ +\end_inset + +. +\end_layout + +\begin_layout Section +Aplicaciones inyectivas, suprayectivas y biyectivas +\end_layout + +\begin_layout Standard +La aplicación +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + es: +\end_layout + +\begin_layout Itemize + +\series bold +Inyectiva +\series default + o +\series bold +uno a uno +\series default + si +\begin_inset Formula $f(a)=f(b)\implies a=b$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Suprayectiva +\series default +, +\series bold +sobreyectiva +\series default + o +\series bold +exhaustiva +\series default + si +\begin_inset Formula $\forall b\in B,\exists a\in A:f(a)=b$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Biyectiva +\series default + si es inyectiva y suprayectiva. +\end_layout + +\begin_layout Standard +La +\series bold +restricción de +\begin_inset Formula $f$ +\end_inset + + a su imagen +\series default + es una aplicación +\begin_inset Formula $\hat{f}:A\rightarrow\text{Im}f$ +\end_inset + + dada por +\begin_inset Formula $\hat{f}(a)=f(a)$ +\end_inset + +. + Se dice que +\begin_inset Formula $\hat{f}$ +\end_inset + + +\begin_inset Quotes cld +\end_inset + +actúa igual +\begin_inset Quotes crd +\end_inset + + que +\begin_inset Formula $f$ +\end_inset + +. + Siempre es suprayectiva. +\end_layout + +\begin_layout Section +Imágenes directas e inversas +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $X\subseteq A$ +\end_inset + +, definimos la +\series bold +imagen directa +\series default + de +\begin_inset Formula $X$ +\end_inset + + como +\begin_inset Formula $f(X)=\{f(x)|x\in X\}$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f(\emptyset)=\emptyset$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Se deriva de que +\begin_inset Formula $\emptyset\times B=\emptyset$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $X\subseteq Y\implies f(X)\subseteq f(Y)$ +\end_inset + +. +\begin_inset Formula +\[ +y\in f(X)\implies\exists x\in X,y\in Y:f(x)=y\implies f(x)\in f(Y)\implies y\in f(Y) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X,Y\subseteq A\implies f(X\cup Y)=f(X)\cup f(Y)$ +\end_inset + +; +\begin_inset Formula $f\left(\bigcup_{\alpha\in I}X_{\alpha}\right)=\bigcup_{\alpha\in I}f(X_{\alpha})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $y\in f(\cup_{\alpha\in I}X_{\alpha})$ +\end_inset + +. + Entonces +\begin_inset Formula $\exists x\in\cup_{\alpha\in I}X_{\alpha}:f(x)=y$ +\end_inset + +. + Como +\begin_inset Formula $x\in\cup_{\alpha\in I}X_{\alpha}$ +\end_inset + + entonces +\begin_inset Formula $\exists\alpha\in I:x\in X_{\alpha}$ +\end_inset + +, luego +\begin_inset Formula $y\in f(X_{\alpha})\subseteq\cup_{\alpha\in I}f(X_{\alpha})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Considérese +\begin_inset Formula $y\in\cup_{\alpha\in I}f(X_{\alpha})$ +\end_inset + +. + Entonces +\begin_inset Formula $\exists\alpha\in I:y\in f(X_{\alpha})$ +\end_inset + +, por lo que +\begin_inset Formula $\exists x\in X_{\alpha}:f(x)=y$ +\end_inset + +. + Entonces +\begin_inset Formula $x\in\cup_{\alpha\in I}X_{\alpha}$ +\end_inset + +, así que +\begin_inset Formula $y=f(x)\in f(\cup_{\alpha\in I}X_{\alpha})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $X,Y\subseteq A\implies f(X\cap Y)\subseteq f(X)\cap f(Y)$ +\end_inset + +; +\begin_inset Formula $f\left(\bigcap_{\alpha\in I}X_{\alpha}\right)\subseteq\bigcap_{\alpha\in I}f(X_{\alpha})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $y\in f(\cap_{\alpha\in I}X_{\alpha})$ +\end_inset + +. + Entonces +\begin_inset Formula $\exists x\in\cap_{\alpha\in I}X_{\alpha}:f(x)=y$ +\end_inset + +. + Como +\begin_inset Formula $x\in\cap_{\alpha\in I}X_{\alpha}$ +\end_inset + +, entonces +\begin_inset Formula $\forall\alpha\in I,x\in X_{\alpha}$ +\end_inset + +, luego +\begin_inset Formula $\forall\alpha\in I,\exists x\in X_{\alpha}:f(x)=y$ +\end_inset + +. + De aquí deducimos que +\begin_inset Formula $\forall\alpha\in I,y\in f(X_{\alpha})$ +\end_inset + + y por tanto +\begin_inset Formula $y\in\cap_{\alpha\in I}f(X_{\alpha})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Para +\begin_inset Formula $Y\subseteq B$ +\end_inset + +, definimos la +\series bold +imagen inversa +\series default + de +\begin_inset Formula $Y$ +\end_inset + + como +\begin_inset Formula $f(Y)^{-1}:=f^{-1}(Y):=\{a\in A|f(a)\in Y\}$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f(\emptyset)^{-1}=\emptyset$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Se deriva de que +\begin_inset Formula $A\times\emptyset=\emptyset$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(B)^{-1}=A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\subseteq B\implies\left(f(X)^{-1}\right)^{\complement}=f\left(X^{\complement}\right)^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\subseteq Y\subseteq B\implies f(X)^{-1}\subseteq f(Y)^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X,Y\subseteq B\implies f(X\cup Y)^{-1}=f(X)^{-1}\cup f(Y)^{-1}$ +\end_inset + +; +\begin_inset Formula $f\left(\bigcup_{\alpha\in I}X_{\alpha}\right)^{-1}=\bigcup_{\alpha\in I}f(X_{\alpha})^{-1}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $x\in f(\bigcup_{\alpha\in I}X_{\alpha})^{-1}$ +\end_inset + +. + Entonces +\begin_inset Formula $f(x)\in\bigcup_{\alpha\in I}X_{\alpha}$ +\end_inset + +, por lo que +\begin_inset Formula $\exists\alpha\in I:f(x)\in X_{\alpha}$ +\end_inset + +, de donde +\begin_inset Formula $x\in f(X_{\alpha})^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X,Y\subseteq B\implies f(X\cap Y)^{-1}=f(X)^{-1}\cap f(Y)^{-1}$ +\end_inset + +; +\begin_inset Formula $f\left(\bigcap_{\alpha\in I}Y_{\alpha}\right)^{-1}=\bigcap_{\alpha\in I}f(Y_{\alpha})^{-1}$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $x\in f(\bigcap_{\alpha\in I}Y_{\alpha})^{-1}$ +\end_inset + +. + Entonces +\begin_inset Formula $f(x)\in\bigcap_{\alpha\in I}Y_{\alpha}$ +\end_inset + +, por lo que +\begin_inset Formula $f(x)\in Y_{\alpha}$ +\end_inset + +, y por tanto +\begin_inset Formula $x\in f(Y_{\alpha})^{-1}$ +\end_inset + +, para todo +\begin_inset Formula $\alpha\in I$ +\end_inset + +. + De aquí se tiene que +\begin_inset Formula $x\in\bigcap_{\alpha\in I}f(Y_{\alpha})^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $x\in\bigcap_{\alpha\in I}f(Y_{\alpha})^{-1}$ +\end_inset + +. + Entonces +\begin_inset Formula $x\in f(Y_{\alpha})^{-1}$ +\end_inset + +, y por tanto +\begin_inset Formula $f(x)\in Y_{\alpha}$ +\end_inset + +, para todo +\begin_inset Formula $\alpha\in I$ +\end_inset + +. + Esto significa que +\begin_inset Formula $f(x)\in\bigcap_{\alpha\in I}Y_{\alpha}$ +\end_inset + +, por lo que +\begin_inset Formula $x\in f(\bigcap_{\alpha\in I}Y_{\alpha})^{-1}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Si +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + es una aplicación, para todo +\begin_inset Formula $X\subseteq A$ +\end_inset + +, +\begin_inset Formula $X\subseteq f(f(X))^{-1}$ +\end_inset + +, y para todo +\begin_inset Formula $Y\subseteq B$ +\end_inset + +, +\begin_inset Formula $f(f(Y)^{-1})\subseteq Y$ +\end_inset + +, y ambos contenidos pueden ser estrictos. +\end_layout + +\begin_layout Section +Composición +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + y +\begin_inset Formula $g:B\rightarrow C$ +\end_inset + +, definimos la +\series bold +composición de +\begin_inset Formula $f$ +\end_inset + + seguida de +\begin_inset Formula $g$ +\end_inset + + +\series default + como la aplicación +\begin_inset Formula $g\circ f:A\rightarrow C$ +\end_inset + + tal que +\begin_inset Formula $(g\circ f)(x)=g(f(x))$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{Dom}(g\circ f)=\text{Dom}f$ +\end_inset + + y el codominio de +\begin_inset Formula $g\circ f$ +\end_inset + + es igual al de +\begin_inset Formula $g$ +\end_inset + +. + Además, si +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + +, +\begin_inset Formula $g:B\rightarrow C$ +\end_inset + + y +\begin_inset Formula $h:C\rightarrow D$ +\end_inset + + son aplicaciones, entonces +\begin_inset Formula $h\circ(g\circ f)=(h\circ g)\circ f$ +\end_inset + +. + La demostración parte de la coincidencia entre dominios y codominios que + permite considerar las distintas composiciones: +\begin_inset Formula +\[ +(h\circ(g\circ f))(a)=h((g\circ f)(a))=h(g(f(a)))=(h\circ g)(f(a))=((h\circ g)\circ f)(a) +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +La composición de aplicaciones inyectivas es inyectiva. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + aplicaciones inyectivas y +\begin_inset Formula $a,a'\in A$ +\end_inset + + tales que +\begin_inset Formula $(g\circ f)(a)=(g\circ f)(a')$ +\end_inset + +. + Entonces +\begin_inset Formula $g(f(a))=g(f(a'))$ +\end_inset + +, y como +\begin_inset Formula $g$ +\end_inset + + es inyectiva, +\begin_inset Formula $f(a)=f(a')$ +\end_inset + +, y entonces +\begin_inset Formula $a=a'$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La composición de aplicaciones suprayectivas es suprayectiva. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + suprayectivas y +\begin_inset Formula $c\in C$ +\end_inset + +. + Entonces +\begin_inset Formula $\exists b\in B:g(b)=c$ +\end_inset + + y a su vez +\begin_inset Formula $\exists a\in A:f(a)=b$ +\end_inset + +, por lo que +\begin_inset Formula $(g\circ f)(a)=c$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La composición de aplicaciones biyectivas es biyectiva. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $g\circ f$ +\end_inset + + es inyectiva, entonces +\begin_inset Formula $f$ +\end_inset + + es inyectiva. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $a,a'\in A$ +\end_inset + + tales que +\begin_inset Formula $f(a)=f(a')$ +\end_inset + +. + Entonces +\begin_inset Formula $g(f(a))=g(f(a'))$ +\end_inset + +, por lo que +\begin_inset Formula $(g\circ f)(a)=(g\circ f)(a')$ +\end_inset + +, y por ello +\begin_inset Formula $a=a'$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $g\circ f$ +\end_inset + + es suprayectiva, +\begin_inset Formula $g$ +\end_inset + + también lo es. +\begin_inset Newline newline +\end_inset + +Para cualquier +\begin_inset Formula $c\in C$ +\end_inset + +, +\begin_inset Formula $\exists a\in A:(g\circ f)(a)=g(f(a))=c$ +\end_inset + +, y por tanto +\begin_inset Formula $\exists f(a)=b\in B:g(b)=c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + y +\begin_inset Formula $X\subseteq A$ +\end_inset + +, la +\series bold +restricción +\series default + de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $X$ +\end_inset + + es la aplicación +\begin_inset Formula $f|_{X}:X\rightarrow B$ +\end_inset + + dada por +\begin_inset Formula $f|_{X}(x)=f(x)$ +\end_inset + +. + También se puede interpretar como que +\begin_inset Formula $f|_{X}=f\circ u$ +\end_inset + + con +\begin_inset Formula $u:X\rightarrow A$ +\end_inset + + como la +\series bold +aplicación inclusión +\series default +, dada por +\begin_inset Formula $u(x)=x$ +\end_inset + +. + Al restringir una aplicación pueden variar sus propiedades. +\end_layout + +\begin_layout Subsection +Inversa de una aplicación biyectiva +\end_layout + +\begin_layout Standard +Definimos la +\series bold +aplicación identidad +\series default + en +\begin_inset Formula $A$ +\end_inset + + como +\begin_inset Formula $1_{A}:A\rightarrow A$ +\end_inset + + con +\begin_inset Formula $1_{A}(a)=a$ +\end_inset + +. + Entonces decimos que +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + es una +\series bold +aplicación invertible +\series default + o que tiene +\series bold +inversa +\series default + si existe +\begin_inset Formula $g:B\rightarrow A$ +\end_inset + + tal que +\begin_inset Formula $g\circ f=1_{A}$ +\end_inset + + y +\begin_inset Formula $f\circ g=1_{B}$ +\end_inset + +. + Ahora supongamos que +\begin_inset Formula $g$ +\end_inset + + y +\begin_inset Formula $h$ +\end_inset + + son inversas de +\begin_inset Formula $f$ +\end_inset + +. + Entonces, +\begin_inset Formula +\[ +g=g\circ1_{B}=g\circ(f\circ h)=(g\circ f)\circ h=1_{A}\circ h=h +\] + +\end_inset + +Por tanto la inversa de una aplicación es única, y la llamamos +\begin_inset Formula $f^{-1}$ +\end_inset + +. + Además +\begin_inset Formula $f$ +\end_inset + + es invertible si y sólo si es biyectiva. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $a,a'\in A$ +\end_inset + +. + Si +\begin_inset Formula $f(a)=f(a')$ +\end_inset + + entonces +\begin_inset Formula $f^{-1}(f(a))=f^{-1}(f(a'))$ +\end_inset + +, luego +\begin_inset Formula $a=a'$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es inyectiva. + Ahora, +\begin_inset Formula $\forall b\in B,\exists a=f^{-1}(b)\in A:f(a)=b$ +\end_inset + +, por lo que es suprayectiva. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para cada +\begin_inset Formula $b\in B$ +\end_inset + + consideremos la imagen inversa +\begin_inset Formula $f(\{b\})^{-1}$ +\end_inset + +. + Como +\begin_inset Formula $f$ +\end_inset + + es suprayectiva, +\begin_inset Formula $f(\{b\})^{-1}\neq\emptyset$ +\end_inset + +, y si +\begin_inset Formula $a,a'\in f(\{b\})^{-1}$ +\end_inset + + entonces +\begin_inset Formula $b=f(a)=f(a')$ +\end_inset + +, y como es inyectiva, +\begin_inset Formula $a=a'$ +\end_inset + +. + Entonces +\begin_inset Formula $f(\{b\})^{-1}$ +\end_inset + + tiene un solo elemento. + Ahora definimos +\begin_inset Formula $g:B\rightarrow A$ +\end_inset + + tal que +\begin_inset Formula $g(b)\in f(b)^{-1}$ +\end_inset + +. + Es inmediato comprobar que +\begin_inset Formula $g=f^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son invertibles, +\begin_inset Formula $g\circ f$ +\end_inset + + también lo es y su inversa es +\begin_inset Formula $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ +\end_inset + +. + Un ejemplo de aplicaciones invertibles son las +\series bold +permutaciones +\series default +. + Sea +\begin_inset Formula $0\neq n\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $A=\{a_{1},\dots,a_{n}\}$ +\end_inset + +. + Entonces una permutación de +\begin_inset Formula $A$ +\end_inset + + es una biyección +\begin_inset Formula $\sigma:A\rightarrow A$ +\end_inset + +. + Se suelen denotar como +\begin_inset Formula +\[ +\sigma:\left(\begin{array}{ccc} +a_{1} & \dots & a_{n}\\ +\sigma(a_{1}) & \dots & \sigma(a_{n}) +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $S(A)$ +\end_inset + + al conjunto de las permutaciones de +\begin_inset Formula $A$ +\end_inset + +. + Si +\begin_inset Formula $A=\{1,\dots,n\}$ +\end_inset + +, se escribe como +\begin_inset Formula $S_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Producto directo +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $I$ +\end_inset + + un conjunto y +\begin_inset Formula $F=\{A_{i}\}_{i\in I}$ +\end_inset + + una familia de conjuntos, se define el +\series bold +producto directo +\series default + de +\begin_inset Formula $F$ +\end_inset + + como el conjunto +\begin_inset Formula +\[ +\prod_{i\in I}A_{i}=\left\{ f:I\rightarrow\cup_{i\in I}:f(i)\in A_{i}\forall i\in I\right\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f\in\prod_{i\in I}A_{i}$ +\end_inset + +, escribimos +\begin_inset Formula $f=(x_{i})_{i\in I}$ +\end_inset + +. + Si +\begin_inset Formula $I$ +\end_inset + + es finito y se escribe como una lista, podemos escribir el conjunto como + +\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n}):x_{i}\in A_{i},i=1,\dots,n\}$ +\end_inset + +. + Si no se quiere escribir el conjunto de índices, este se presupone. +\end_layout + +\begin_layout Standard +Debemos tener en cuenta que el producto cartesiano se usa en la definición + de relación y aplicación, por lo que el producto directo requiere de la + definición del cartesiano y no puede sustituirlo, aunque exista una biyección + cuando el número de factores es finito y usemos la misma escritura. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $J$ +\end_inset + + conjuntos y +\begin_inset Formula $F=\{A_{i}\}_{i\in I}$ +\end_inset + + y +\begin_inset Formula $G=\{B_{j}\}_{j\in J}$ +\end_inset + + familias de conjuntos. + Si existe una biyección +\begin_inset Formula $\sigma:I\rightarrow J$ +\end_inset + + y un conjunto de biyecciones +\begin_inset Formula $\{f_{i}:A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$ +\end_inset + +, entonces existe una biyección +\begin_inset Formula $f:\prod_{i\in I}A_{i}\rightarrow\prod_{j\in J}B_{j}$ +\end_inset + + dada por +\begin_inset Formula $f(x)_{j}=f_{\sigma^{-1}(j)}\left(x_{\sigma^{-1}(j)}\right)$ +\end_inset + + para +\begin_inset Formula $x\in\prod_{i\in I}A_{i}$ +\end_inset + +. + +\series bold +Demostración: +\series default + para cada +\begin_inset Formula $x\in\prod_{i\in I}A_{i}$ +\end_inset + + y cada +\begin_inset Formula $j\in J$ +\end_inset + + existe un único +\begin_inset Formula $f_{\sigma^{-1}(j)}\left(x_{\sigma^{-1}(j)}\right)$ +\end_inset + +, de modo que la relación es de aplicación, y debemos ver que es biyectiva. + Sea +\begin_inset Formula $g:\prod_{j\in J}B_{j}\rightarrow\prod_{i\in I}A_{i}$ +\end_inset + + dada por +\begin_inset Formula $g(y)_{i}=f_{i}^{-1}\left(y_{\sigma(i)}\right)$ +\end_inset + + ( +\begin_inset Formula $f_{i}^{-1}:B_{\sigma(i)}\rightarrow A_{i}$ +\end_inset + +). + Como también es aplicación, debemos probar que sean inversas. + Entonces: +\begin_inset Formula +\[ +g(f(x))_{i}=f_{i}^{-1}(f(x)_{\sigma(i)})=f_{i}^{-1}\left(f_{\sigma^{-1}(\sigma(i))}\left(x_{\sigma^{-1}(\sigma(i))}\right)\right)=f_{i}^{-1}(f_{i}(x_{i}))=x_{i} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +De forma análoga, +\begin_inset Formula $f(g(y))=y$ +\end_inset + +, y como tiene inversa, la aplicación es biyectiva. +\end_layout + +\begin_layout Standard + +\series bold +Axioma de Elección: +\series default + Si +\begin_inset Formula $I$ +\end_inset + + es un conjunto no vacío y +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + una familia de conjuntos no vacíos, entonces +\begin_inset Formula $\prod_{i\in I}A_{i}$ +\end_inset + + es no vacío. +\end_layout + +\end_body +\end_document diff --git a/cyn/n3.lyx b/cyn/n3.lyx new file mode 100644 index 0000000..de18e21 --- /dev/null +++ b/cyn/n3.lyx @@ -0,0 +1,725 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Relaciones de orden +\end_layout + +\begin_layout Standard +Una relación +\begin_inset Formula $R$ +\end_inset + + en un conjunto +\begin_inset Formula $A$ +\end_inset + + se dice que es: +\end_layout + +\begin_layout Itemize + +\series bold +Reflexiva +\series default + si +\begin_inset Formula $(a,a)\in R$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Transitiva +\series default + si +\begin_inset Formula $(a,b),(b,c)\in R\implies(a,c)\in R$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Simétrica +\series default + si +\begin_inset Formula $(a,b)\in R\implies(b,a)\in R$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Antisimétrica +\series default + si +\begin_inset Formula $(a,b),(b,a)\in R\implies a=b$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una relación +\begin_inset Formula $\leq$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + es +\series bold +de orden parcial +\series default + (o un orden parcial) si es reflexiva, transitiva y antisimétrica. + Un ejemplo es el +\series bold +orden lexicográfico +\series default + en +\begin_inset Formula $K^{n}$ +\end_inset + +: +\begin_inset Formula $(x_{1},\dots,x_{n})\leq(y_{1},\dots,y_{n})$ +\end_inset + + si y sólo si +\begin_inset Formula $x_{1}<y_{1}$ +\end_inset + +, o +\begin_inset Formula $x_{1}=y_{1}$ +\end_inset + + y bien los vectores son de un elemento o bien +\begin_inset Formula $(x_{2},\dots,x_{n})\leq(y_{2},\dots,y_{n})$ +\end_inset + + en +\begin_inset Formula $K^{n-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +conjunto parcialmente ordenado +\series default + ( +\series bold +CPO +\series default + o +\series bold +COPO +\series default +) es un par +\begin_inset Formula $(A,\leq)$ +\end_inset + + donde +\begin_inset Formula $A$ +\end_inset + + es un conjunto y +\begin_inset Quotes cld +\end_inset + + +\begin_inset Formula $\leq$ +\end_inset + + +\begin_inset Quotes crd +\end_inset + + una relación de orden en +\begin_inset Formula $A$ +\end_inset + +. + Si el contexto no deja dudas, diremos que +\begin_inset Formula $A$ +\end_inset + + es un COPO. + +\series bold +Notación: +\series default + +\begin_inset Formula $a<b:\iff a\leq b\land a\neq b$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + es un +\series bold +conjunto totalmente +\series default + o +\series bold +linealmente ordenado +\series default +, y +\begin_inset Formula $\leq$ +\end_inset + + un +\series bold +orden total +\series default + o +\series bold +lineal +\series default +, si se satisface la +\series bold +ley de la tricotomía +\series default +, es decir, si dados +\begin_inset Formula $a,b\in A$ +\end_inset + +, ocurre que +\begin_inset Formula $a=b$ +\end_inset + +, +\begin_inset Formula $a<b$ +\end_inset + + o +\begin_inset Formula $b<a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos representar conjuntos ordenados mediante +\series bold +diagramas de Hasse +\series default +, también llamados +\begin_inset Quotes cld +\end_inset + + +\lang english +upward drawing +\lang spanish + +\begin_inset Quotes crd +\end_inset + + o diagramas de grafo de un orden parcial. + Se representan los elementos de +\begin_inset Formula $A$ +\end_inset + + y se unen con una línea las que tienen relación de equivalencia entre sí, + sin contar las que se puedan deducir de la reflexividad o transitividad, + y con el elemento mayor situado más arriba. + También se pueden representar mediante +\series bold + +\begin_inset Formula $\zeta$ +\end_inset + +-matrices +\series default +, matrices +\begin_inset Formula $\zeta_{A}$ +\end_inset + + con índices en +\begin_inset Formula $A$ +\end_inset + +, de forma que +\begin_inset Formula +\[ +\zeta_{a,b}=\begin{cases} +1 & \text{si }a<b\\ +0 & \text{en otro caso} +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Elementos notables en un COPO +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(A,\leq)$ +\end_inset + + un conjunto parcialmente ordenado y +\begin_inset Formula $a\in A$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es +\series bold +máximo +\series default + de +\begin_inset Formula $A$ +\end_inset + + cuando +\begin_inset Formula $a\geq b\forall b\in A$ +\end_inset + +. + Si existe, es único, pues si fueran +\begin_inset Formula $a,a'\in A$ +\end_inset + + máximos de +\begin_inset Formula $A$ +\end_inset + +, se tendría que +\begin_inset Formula $a\leq a'$ +\end_inset + + y +\begin_inset Formula $a'\leq a$ +\end_inset + +, y por tanto +\begin_inset Formula $a=a'$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es +\series bold +mínimo +\series default + o +\series bold +primer elemento +\series default + de +\begin_inset Formula $A$ +\end_inset + + cuando +\begin_inset Formula $a\leq b\forall b\in A$ +\end_inset + +. + Si existe, es único, y la demostración es análoga. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es un +\series bold +elemento maximal +\series default + de +\begin_inset Formula $A$ +\end_inset + + cuando +\begin_inset Formula $b\geq a\implies b=a$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es un +\series bold +elemento minimal +\series default + de +\begin_inset Formula $A$ +\end_inset + + cuando +\begin_inset Formula $b\leq a\implies b=a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Además, si +\begin_inset Formula $B\subseteq A$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es +\series bold +cota superior +\series default + de +\begin_inset Formula $B$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $a\geq b\forall b\in B$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es +\series bold +cota inferior +\series default + de +\begin_inset Formula $B$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $a\leq b\forall b\in B$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es +\series bold +supremo +\series default + o +\series bold +extremo superior +\series default + de +\begin_inset Formula $B$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + si es el mínimo de las cotas superiores de +\begin_inset Formula $B$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +. + Si existe es único, pues el mínimo de las cuotas superiores, al ser un + mínimo, es único. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $a$ +\end_inset + + es +\series bold +ínfimo +\series default + o +\series bold +extremo inferior +\series default + de +\series bold + +\begin_inset Formula $B$ +\end_inset + + +\series default + en +\begin_inset Formula $A$ +\end_inset + + si es el máximo de las cotas inferiores de +\begin_inset Formula $B$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +. + Si existe es único, por razonamiento análogo al anterior. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $b\in B$ +\end_inset + +, +\begin_inset Formula $b$ +\end_inset + + es máximo de +\begin_inset Formula $B$ +\end_inset + + si y sólo si es el supremo de +\begin_inset Formula $B$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Al ser máximo se tiene que +\begin_inset Formula $b'\geq b\forall b\in B$ +\end_inset + + y por tanto también es cota superior, pero si hubiera una cota superior + menor, a la que llamaremos +\begin_inset Formula $c$ +\end_inset + +, entonces +\begin_inset Formula $c<b\in B$ +\end_inset + + y por tanto no es cota superior +\begin_inset Formula $\#$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Al ser supremo, es cota superior, por lo que +\begin_inset Formula $a\geq b\forall b\in B$ +\end_inset + +. + Si a esto le unimos que +\begin_inset Formula $a\in B$ +\end_inset + +, tenemos la definición de máximo. +\end_layout + +\begin_layout Standard +Esta propiedad se cumple de forma análoga si en vez del máximo y el supremo + tomamos el mínimo y el ínfimo. +\end_layout + +\begin_layout Section +Conjuntos bien ordenados +\end_layout + +\begin_layout Standard +Un CPO es +\series bold +bien ordenado +\series default + si todo subconjunto suyo no vacío tiene primer elemento. + Todo conjunto bien ordenado es totalmente ordenado. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A$ +\end_inset + + bien ordenado y +\begin_inset Formula $B=\{a,b\}\subseteq A$ +\end_inset + +, como +\begin_inset Formula $\{a,b\}\neq\emptyset$ +\end_inset + +, tiene primer elemento, de lo que se desprende la tricotomía. +\end_layout + +\begin_layout Standard + +\series bold +Principio de la Buena Ordenación: +\series default + Si +\begin_inset Formula $A\neq\emptyset$ +\end_inset + +, existe un orden +\begin_inset Formula $\leq$ +\end_inset + + tal que +\begin_inset Formula $(A,\leq)$ +\end_inset + + es un conjunto bien ordenado. + Esto es equivalente al Axioma de Elección. +\end_layout + +\end_body +\end_document diff --git a/cyn/n4.lyx b/cyn/n4.lyx new file mode 100644 index 0000000..50a4550 --- /dev/null +++ b/cyn/n4.lyx @@ -0,0 +1,374 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una relación es +\series bold +de equivalencia +\series default + si es reflexiva, simétrica y transitiva. + Si +\begin_inset Formula $(a,b)\in R$ +\end_inset + +, escribimos +\begin_inset Formula $aRb$ +\end_inset + +, +\begin_inset Formula $a\sim_{R}b$ +\end_inset + + o, si no causa confusión +\begin_inset Formula $a\sim b$ +\end_inset + +. +\end_layout + +\begin_layout Section +Clases de equivalencia +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + y +\begin_inset Formula $R$ +\end_inset + + una relación de equivalencia en +\begin_inset Formula $A$ +\end_inset + +. + Para cada +\begin_inset Formula $a\in A$ +\end_inset + +, su clase de equivalencia es +\begin_inset Formula $[a]=\{b\in A:a\sim b\}$ +\end_inset + +. + Entonces: +\begin_inset Formula +\[ +[a]\cap[b]\neq\emptyset\iff a\sim_{R}b\iff[a]=[b] +\] + +\end_inset + + +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + +\begin_inset Formula $x\in[a]\cap[b]\implies a\sim x\land x\sim b\implies a\sim b$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Por hipótesis +\begin_inset Formula $a\sim b$ +\end_inset + +. + Entonces +\begin_inset Formula $x\in[a]\implies x\sim a\implies x\sim b\implies x\in[b]$ +\end_inset + +. + Análogamente, +\begin_inset Formula $y\in[b]\implies y\in[a]$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + +\begin_inset Formula $(a,a)\in R\implies a\in[a]=[b]\implies[a]\cap[b]\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $C$ +\end_inset + + es una clase de equivalencia y +\begin_inset Formula $a\in C$ +\end_inset + + entonces +\begin_inset Formula $[a]=C$ +\end_inset + +, y decimos que +\begin_inset Formula $a$ +\end_inset + + es un +\series bold +representante +\series default + de +\begin_inset Formula $C$ +\end_inset + +. +\end_layout + +\begin_layout Section +El conjunto cociente y la proyección canónica +\end_layout + +\begin_layout Standard +Se define el +\series bold +conjunto cociente +\series default + de +\begin_inset Formula $A$ +\end_inset + + respecto de la relación +\begin_inset Formula $R$ +\end_inset + + como el conjunto de las clases de equivalencia de los elementos de +\begin_inset Formula $A$ +\end_inset + + respecto de +\begin_inset Formula $R$ +\end_inset + +, y se denota +\begin_inset Formula $A/R$ +\end_inset + +, +\begin_inset Formula $A/\sim_{R}$ +\end_inset + +, +\begin_inset Formula $A/\sim$ +\end_inset + + o +\begin_inset Formula $\frac{A}{\sim}$ +\end_inset + +. + Calcular los conjuntos cociente consiste en dar un +\series bold +juego completo de representantes +\series default +, es decir, describir un conjunto +\begin_inset Formula $R$ +\end_inset + + con uno y solo un representante de cada clase de equivalencia ( +\series bold +conjunto irredundante de representantes +\series default + de las clases de equivalencia). +\end_layout + +\begin_layout Standard +Llamamos +\series bold +proyección canónica +\series default + a la aplicación +\begin_inset Formula $\eta_{R}:A\rightarrow A/R$ +\end_inset + + con +\begin_inset Formula $a\mapsto[a]$ +\end_inset + +. + Siempre es suprayectiva, por la definición de +\begin_inset Formula $A/R$ +\end_inset + +, y solo es inyectiva cuando +\begin_inset Formula $R$ +\end_inset + + es la igualdad. +\end_layout + +\begin_layout Section +Relaciones de equivalencia y particiones +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + e +\begin_inset Formula $I$ +\end_inset + + conjuntos y +\begin_inset Formula $P=\{B_{i}\}_{i\in I}$ +\end_inset + + una familia de subconjuntos de +\begin_inset Formula $A$ +\end_inset + +, decimos que +\begin_inset Formula $P$ +\end_inset + + forma una +\series bold +partición +\series default + para +\begin_inset Formula $A$ +\end_inset + + si se verifica que +\begin_inset Formula $B_{i}\cap B_{j}=\emptyset\iff i\neq j$ +\end_inset + + y +\begin_inset Formula $\bigcup_{i\in I}B_{i}=A$ +\end_inset + +. + Toda relación de equivalencia induce una partición, pues +\begin_inset Formula $[a]\cap[b]=\emptyset\iff a\not\sim b$ +\end_inset + +, lo que se obtiene de las propiedades de las clases de equivalencia, y + +\begin_inset Formula $\cup_{[a]\in A/\sim}[a]=A$ +\end_inset + +, pues +\begin_inset Formula $b\sim b\implies b\in[b]\subseteq\cup_{[a]\in A/\sim}[a]$ +\end_inset + +. + Del mismo modo, toda partición +\begin_inset Formula $\{C_{i}\}_{i\in I}$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + determina una clase de equivalencia, definida por +\begin_inset Formula $a\sim b:\iff\exists i\in I:a,b\in C_{i}$ +\end_inset + +. + Solo quedaría probar que esta es una relación de equivalencia y las clases + de equivalencia son las +\begin_inset Formula $C_{i}$ +\end_inset + +. +\end_layout + +\end_body +\end_document diff --git a/cyn/n5.lyx b/cyn/n5.lyx new file mode 100644 index 0000000..0315b5a --- /dev/null +++ b/cyn/n5.lyx @@ -0,0 +1,2359 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Dos conjuntos son +\series bold +equipotentes +\series default + si existe una aplicación biyectiva entre ellos. + Al ser una relación reflexiva, simétrica y transitiva, podemos agrupar + a los conjuntos en +\begin_inset Quotes cld +\end_inset + +clases de equipotencia +\begin_inset Quotes crd +\end_inset + + que llamamos +\series bold +cardinales +\series default +, y representamos con +\begin_inset Formula $|A|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un conjunto +\begin_inset Formula $A$ +\end_inset + + es +\series bold +infinito +\series default + si existe +\begin_inset Formula $B\subsetneq A$ +\end_inset + + equipotente a +\begin_inset Formula $A$ +\end_inset + +. + En caso contrario es +\series bold +finito +\series default +. + Si +\begin_inset Formula $A$ +\end_inset + + es finito, +\begin_inset Formula $f:A\rightarrow A$ +\end_inset + + es inyectiva si y sólo si es suprayectiva. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Se +\begin_inset Formula $B=\text{Im}f\subseteq A$ +\end_inset + + y +\begin_inset Formula $\hat{f}:A\rightarrow B$ +\end_inset + + la restricción a la imagen de +\begin_inset Formula $f$ +\end_inset + +. + Esta es entonces biyectiva, y como +\begin_inset Formula $A$ +\end_inset + + es finito, el subconjunto +\begin_inset Formula $B$ +\end_inset + + no puede ser propio, por lo que es +\begin_inset Formula $B=A$ +\end_inset + +, de modo que +\begin_inset Formula $\text{Im}f=A$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es suprayectiva. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para cualquier +\begin_inset Formula $a\in A$ +\end_inset + + se tiene que +\begin_inset Formula $f(\{a\})^{-1}\neq\emptyset$ +\end_inset + +, por lo que existe +\begin_inset Formula $g:A\rightarrow A\in\prod_{a\in A}f(\{a\})^{-1}$ +\end_inset + +. + Por tanto +\begin_inset Formula $f(g(a))=a\forall a\in A$ +\end_inset + +, es decir, +\begin_inset Formula $f\circ g=1_{A}$ +\end_inset + +, por lo que +\begin_inset Formula $g$ +\end_inset + + es inyectiva y, por la implicación anterior, suprayectiva. + Si +\begin_inset Formula $a_{1},a_{2}\in A$ +\end_inset + + verifican +\begin_inset Formula $f(a_{1})=f(a_{2})$ +\end_inset + + entonces existen, por la suprayectividad de +\begin_inset Formula $g$ +\end_inset + +, +\begin_inset Formula $b_{1},b_{2}\in A$ +\end_inset + + con +\begin_inset Formula $g(b_{1})=a_{1}$ +\end_inset + + y +\begin_inset Formula $g(b_{2})=a_{2}$ +\end_inset + +. + Por tanto +\begin_inset Formula $b_{1}=f(g(b_{1}))=f(a_{1})=f(a_{2})=f(g(b_{2}))=b_{2}$ +\end_inset + +, de donde +\begin_inset Formula $a_{1}=g(b_{1})=g(b_{2})=a_{2}$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es inyectiva. +\end_layout + +\begin_layout Standard +Igualmente, si +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son conjuntos finitos con +\begin_inset Formula $|A|=|B|$ +\end_inset + +, entonces +\begin_inset Formula $g:A\rightarrow B$ +\end_inset + + es inyectiva si y sólo si es suprayectiva. + +\series bold +Demostración: +\series default + Al existir una biyección +\begin_inset Formula $h:B\rightarrow A$ +\end_inset + +, podemos definir +\begin_inset Formula $f=h\circ g:A\rightarrow A$ +\end_inset + +. + Si +\begin_inset Formula $g$ +\end_inset + + es inyectiva, +\begin_inset Formula $f$ +\end_inset + + también, por lo que +\begin_inset Formula $f$ +\end_inset + + es suprayectiva y +\begin_inset Formula $g=h^{-1}\circ f$ +\end_inset + + también. + El recíproco se prueba de forma análoga. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $A\subseteq B$ +\end_inset + +, si +\begin_inset Formula $A$ +\end_inset + + es infinito, +\begin_inset Formula $B$ +\end_inset + + también lo es. + +\series bold +Demostración: +\series default + Existe +\begin_inset Formula $A_{0}\subsetneq A$ +\end_inset + + y +\begin_inset Formula $f:A_{0}\rightarrow A$ +\end_inset + + biyectiva. + Sea entonces +\begin_inset Formula $B_{0}=A_{0}\dot{\cup}(B\backslash A)\subsetneq B$ +\end_inset + +, basta construir una biyección +\begin_inset Formula $f':B_{0}\rightarrow B$ +\end_inset + + con +\begin_inset Formula $x\in A_{0}\mapsto f(x)$ +\end_inset + + y +\begin_inset Formula $x\in B\backslash A\mapsto x$ +\end_inset + +. +\end_layout + +\begin_layout Section +Números naturales +\end_layout + +\begin_layout Standard +Un cardinal es finito si tiene un representante finito. + De lo contrario es infinito. + Llamamos +\series bold +números naturales +\series default + ( +\begin_inset Formula $\mathbb{N}$ +\end_inset + +) a la colección de cardinales finitos. + El +\series bold +axioma del infinito +\series default + afirma que esta colección es un conjunto. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $n=|A|$ +\end_inset + +, llamamos +\series bold +sucesor +\series default + de +\begin_inset Formula $n$ +\end_inset + + a +\begin_inset Formula $n^{*}=|A\cup\{x\}|$ +\end_inset + + con +\begin_inset Formula $x\notin A$ +\end_inset + +. + Tenemos que +\begin_inset Formula $n^{*}\in\mathbb{N}$ +\end_inset + +, y escribimos +\begin_inset Formula $n^{*}=n+1$ +\end_inset + +. + Podemos entonces definir +\begin_inset Formula $\sigma:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\sigma(n)=n^{*}$ +\end_inset + +, con lo que +\begin_inset Formula $\sigma$ +\end_inset + + es inyectiva pero no suprayectiva y por tanto +\begin_inset Formula $\mathbb{N}$ +\end_inset + + es infinito. + Vemos que +\begin_inset Formula $0=|\emptyset|$ +\end_inset + + es el único número natural que no es sucesor de ningún otro. + Escribimos +\begin_inset Formula $\mathbb{N}^{*}=\mathbb{N}\backslash\{0\}$ +\end_inset + +, y entonces podemos definir intuitivamente la aplicación +\series bold +antecesor +\series default + como +\begin_inset Formula $\hat{\sigma}^{-1}:\mathbb{N}^{*}\rightarrow\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $|A|\leq|B|\iff\exists f:A\rightarrow B\text{ inyectiva}$ +\end_inset + +, y vemos que +\begin_inset Formula $(\mathbb{N},\leq)$ +\end_inset + + es bien ordenado. + Entonces +\begin_inset Formula $n^{*}=\min\{x\in\mathbb{N}|n<x\}$ +\end_inset + + y por tanto, si +\begin_inset Formula $a,n\in\mathbb{N}$ +\end_inset + + son tales que +\begin_inset Formula $n\leq a\leq n^{*}$ +\end_inset + +, entonces +\begin_inset Formula $a=n$ +\end_inset + + o +\begin_inset Formula $a=n^{*}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $M_{n}=\{x\in\mathbb{N}|n<x\}$ +\end_inset + + y +\begin_inset Formula $a=\min M_{n}$ +\end_inset + +. + Sabemos que existen +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + + representantes respectivos de +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $n$ +\end_inset + + junto con +\begin_inset Formula $f:N\rightarrow A$ +\end_inset + + inyectiva pero no suprayectiva. + Entonces existe +\begin_inset Formula $x\in A$ +\end_inset + + con +\begin_inset Formula $x\notin\text{Im}f$ +\end_inset + +. + Sea +\begin_inset Formula $g:N\cup\{N\}\rightarrow A$ +\end_inset + + con +\begin_inset Formula $g(b)=f(b)$ +\end_inset + + para +\begin_inset Formula $b\in N$ +\end_inset + + y +\begin_inset Formula $g(N)=x$ +\end_inset + +, podemos comprobar que +\begin_inset Formula $g$ +\end_inset + + es inyectiva y por tanto +\begin_inset Formula $n^{*}\leq a$ +\end_inset + +, con lo que +\begin_inset Formula $n^{*}=a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +principio de inducción en los números naturales +\series default + afirma que si +\begin_inset Formula $A\subseteq\mathbb{N}$ +\end_inset + + cumple que +\begin_inset Formula $0\in A$ +\end_inset + + y +\begin_inset Formula $n\in A\implies n^{*}\in A$ +\end_inset + + entonces +\begin_inset Formula $A=\mathbb{N}$ +\end_inset + +. + Esto puede modificarse tomando que para +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, si +\begin_inset Formula $k\in A$ +\end_inset + + y +\begin_inset Formula $k\leq n\in A\implies n^{*}\in A$ +\end_inset + + entonces +\begin_inset Formula $\{n\in\mathbb{N}|n\geq k\}\subseteq A$ +\end_inset + +. + La +\series bold +inducción matemática +\series default + es un método de demostración consistente en demostrar la validez de la + propiedad +\begin_inset Formula $P$ +\end_inset + + en +\begin_inset Formula $k$ +\end_inset + + y luego probar la validez de +\begin_inset Formula $P(n+1)$ +\end_inset + + suponiendo la de +\begin_inset Formula $P(n)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +También, dados +\begin_inset Formula $A\subseteq\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $k\in A$ +\end_inset + + y +\begin_inset Formula $\forall m\in\mathbb{N},(k\leq m<n\implies m\in A)\implies n\in A$ +\end_inset + +, se tiene que +\begin_inset Formula $\{n\in\mathbb{N}|n\geq k\}\subseteq A$ +\end_inset + +. + La aplicación de esto se conoce como +\series bold +inducción matemática fuerte +\series default +. + El principio de inducción, el del buen orden y el axioma de elección son + equivalentes. +\end_layout + +\begin_layout Standard +Todo conjunto finito totalmente ordenado está bien ordenado y tiene máximo + y mínimo. + Por otro lado, +\begin_inset Formula $\mathbb{N}_{n}=\{x\in\mathbb{N}|1\leq x\leq n\}$ +\end_inset + + cumple que +\begin_inset Formula $|\mathbb{N}_{n}|=|\{1,\dots,n\}|=n$ +\end_inset + + y por tanto es finito. +\end_layout + +\begin_layout Standard +El conjunto de números naturales que hemos construido satisface los +\series bold +axiomas de Peano +\series default +: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $0\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\exists\sigma:\mathbb{N}\rightarrow\mathbb{N}\text{ inyectiva}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $0\notin\text{Im}\sigma$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Se cumple el principio de inducción. +\end_layout + +\begin_layout Standard +Cualquier conjunto que cumpla estas condiciones es esencialmente igual a + +\begin_inset Formula $\mathbb{N}$ +\end_inset + +, lo que se conoce como +\series bold +unicidad del sistema de Peano +\series default +. +\end_layout + +\begin_layout Standard +Definimos la +\series bold +suma +\series default + como +\begin_inset Formula $+:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $n+0=n$ +\end_inset + + y +\begin_inset Formula $n+m^{*}=(n+m)^{*}$ +\end_inset + +. + Esta cumple que +\begin_inset Formula $(n+1)+m=n+(m+1)$ +\end_inset + +, y verifica las propiedades de +\series bold +conmutatividad +\series default +, +\series bold +asociatividad +\series default + y +\series bold +cancelación +\series default + ( +\begin_inset Formula $a+c=b+c\implies a=b$ +\end_inset + +). +\end_layout + +\begin_layout Standard +Definimos el +\series bold +producto +\series default + como +\begin_inset Formula $\cdot:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $n\cdot0=0$ +\end_inset + + y +\begin_inset Formula $n\cdot m^{*}=n\cdot m+n$ +\end_inset + +, y escribimos +\begin_inset Formula $n\cdot m=nm$ +\end_inset + +. + Este cumple que +\begin_inset Formula $(n+1)m=nm+m$ +\end_inset + +, y verifica las propiedades de +\series bold +conmutatividad +\series default +, +\series bold +asociatividad +\series default +, +\series bold +distributividad +\series default + respecto de la suma y +\series bold +cancelación +\series default + ( +\begin_inset Formula $nm=0\iff n=0\lor m=0$ +\end_inset + +). +\end_layout + +\begin_layout Standard + +\series bold +Teorema +\series default + para la relación del orden y las operaciones aritméticas: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\leq b\iff\exists u\in\mathbb{N}:a+u=b$ +\end_inset + +; +\begin_inset Formula $a\leq a+u\forall u\in\mathbb{N}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $B=\{n\in\mathbb{N}|a+n>b\}$ +\end_inset + + y como +\begin_inset Formula $b^{*}\in B$ +\end_inset + + entonces +\begin_inset Formula $B\neq\emptyset$ +\end_inset + +, por lo que existe +\begin_inset Formula $c:=\min B$ +\end_inset + +. + Sea entonces +\begin_inset Formula $u\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $u^{*}=c$ +\end_inset + +. + De aquí, +\begin_inset Formula $a+u\leq b<a+u^{*}$ +\end_inset + +, por lo que +\begin_inset Formula $a+u=b$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\leq b\implies a+c\leq b+c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\leq b\implies ac\leq bc$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $a+u=b$ +\end_inset + +, llamamos +\begin_inset Formula $u=b-a$ +\end_inset + +. +\end_layout + +\begin_layout Section +Números enteros +\end_layout + +\begin_layout Standard +Llamamos +\series bold +números enteros +\series default + al conjunto cociente +\begin_inset Formula $\mathbb{Z}=\mathbb{N}\times\mathbb{N}/\sim$ +\end_inset + + con +\begin_inset Formula +\[ +(a,b)\sim(n,m)\iff a+m=b+n +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Tenemos entonces que +\begin_inset Formula $\{(a,0)\}_{a\in\mathbb{N}}\dot{\cup}\{(0,b)\}_{b\in\mathbb{N}^{*}}$ +\end_inset + + es un conjunto irredundante de representantes. + Así, si +\begin_inset Formula $n\geq m$ +\end_inset + +, +\begin_inset Formula $(n,m)\in[(n-m,0)]$ +\end_inset + +, y si +\begin_inset Formula $n<m$ +\end_inset + +, +\begin_inset Formula $(n,m)\in[(0,m-n)]$ +\end_inset + +. + Denotamos con +\begin_inset Formula $n$ +\end_inset + + a +\begin_inset Formula $[(n,0)]$ +\end_inset + + y los identificamos con los naturales, y denotamos con +\begin_inset Formula $-n$ +\end_inset + + a +\begin_inset Formula $[(0,n)]$ +\end_inset + +. + Definimos también +\begin_inset Formula $\mathbb{Z}^{+}=\{n\in\mathbb{Z}|0\neq n\in\mathbb{N}\}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}^{-}=\{-n\in\mathbb{Z}|0\neq n\in\mathbb{N}\}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Z}^{*}=\mathbb{Z}\backslash\{0\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $[(a,b)]\leq[(m,n)]\iff a+n\leq b+m$ +\end_inset + +, y de aquí que +\begin_inset Formula $(\mathbb{Z},\leq)$ +\end_inset + + es un conjunto totalmente ordenado en el que todo entero tiene predecesor + y sucesor. +\end_layout + +\begin_layout Standard +Definimos la +\series bold +suma +\series default + como +\begin_inset Formula $+:\mathbb{Z}\times\mathbb{Z}\rightarrow\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $[(a,b)]+[(m,n)]=[(a+m,b+n)]$ +\end_inset + +. + Esta está bien definida y verifica las propiedades conmutativa, asociativa, + existencia de +\series bold +neutro +\series default + +\begin_inset Formula $0=[(0,0)]$ +\end_inset + + ( +\begin_inset Formula $\forall a\in\mathbb{Z},a+0=0$ +\end_inset + +) y existencia de +\series bold +opuesto +\series default + o +\series bold +inverso bajo la suma +\series default + ( +\begin_inset Formula $\forall a\in\mathbb{Z},\exists a^{\prime}:a+a^{\prime}=0$ +\end_inset + +). + +\series bold +Demostración +\series default + de que está bien definida. + Sean +\begin_inset Formula $a,a',b,b',m,m',n,n'\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $[(a,b)]=[(a',b')]$ +\end_inset + + y +\begin_inset Formula $[(m,n)]=[(m',n')]$ +\end_inset + +. + Entonces +\begin_inset Formula $a+b'=b+a'$ +\end_inset + + y +\begin_inset Formula $m+n'=n+m'$ +\end_inset + +, de donde +\begin_inset Formula $a+b'+m+n'=b+a'+n+m'$ +\end_inset + +, luego +\begin_inset Formula $(a+m)+(b'+n')=(a'+m')+(b+n)$ +\end_inset + + y +\begin_inset Formula $[(a+m,b+n)]=[(a'+m',b'+n')]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos el +\series bold +producto +\series default + como +\begin_inset Formula $\cdot:\mathbb{Z}\times\mathbb{Z}\rightarrow\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $[(a,b)]\cdot[(m,n)]=[(am+bn,an+bm)]$ +\end_inset + +. + Este está bien definido y verifica las propiedades conmutativa, asociativa, + distributiva respecto a la suma y existencia de neutro +\begin_inset Formula $1=[(1,0)]$ +\end_inset + +. +\end_layout + +\begin_layout Section +Números racionales +\end_layout + +\begin_layout Standard +Llamamos +\series bold +números racionales +\series default + al conjunto cociente +\begin_inset Formula $\mathbb{Q}=\mathbb{Z}\times\mathbb{Z}^{*}/\sim$ +\end_inset + + con +\begin_inset Formula +\[ +[(a,b)]\sim[(n,m)]\iff am=bn +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Identificamos los enteros con los +\begin_inset Formula $[(n,1)]$ +\end_inset + +, escribimos +\begin_inset Formula $\frac{m}{n}:=[(m,n)]$ +\end_inset + + y denotamos con +\begin_inset Formula $m$ +\end_inset + + a +\begin_inset Formula $\frac{m}{1}=[(m,1)]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $\frac{n}{m}\leq\frac{a}{b}\iff nmb^{2}\leq abm^{2}$ +\end_inset + +, y decimos que un racional es +\series bold +positivo +\series default + si es mayor que 0 y +\series bold +negativo +\series default + si es menor. + Si +\begin_inset Formula $m$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + tienen el mismo signo, podemos considerar +\begin_inset Formula $\frac{n}{m}\leq\frac{a}{b}\iff nb\leq ma$ +\end_inset + +. + Se tiene que +\begin_inset Formula $(\mathbb{Q},\leq)$ +\end_inset + + es un conjunto totalmente ordenado. + +\series bold +Demostración: +\series default + Dados +\begin_inset Formula $\frac{n}{m}$ +\end_inset + + y +\begin_inset Formula $\frac{a}{b}$ +\end_inset + +, se tiene que +\begin_inset Formula $nb=ma$ +\end_inset + +, +\begin_inset Formula $nb>ma$ +\end_inset + + o +\begin_inset Formula $nb<ma$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos la suma como +\begin_inset Formula $+:\mathbb{Q}\times\mathbb{Q}\rightarrow\mathbb{Q}$ +\end_inset + + tal que +\begin_inset Formula $\frac{a}{b}+\frac{m}{n}=\frac{an+bm}{bn}$ +\end_inset + +. + Esta está bien definida, y verifica las propiedades de conmutatividad, + asociatividad, existencia de neutro +\begin_inset Formula $0=[(0,1)]$ +\end_inset + + y existencia de opuesto. + Además, +\begin_inset Formula $\frac{-n}{m}=\frac{n}{-m}=-\frac{n}{m}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos el producto como +\begin_inset Formula $\cdot:\mathbb{Q}\times\mathbb{Q}\rightarrow\mathbb{Q}$ +\end_inset + + tal que +\begin_inset Formula $\frac{a}{b}\cdot\frac{m}{n}=\frac{am}{bn}$ +\end_inset + +. + Este está bien definido y verifica las propiedades de conmutatividad, asociativ +idad, existencia de neutro +\begin_inset Formula $1=[(1,1)]$ +\end_inset + + y existencia de inverso para todo racional no cero ( +\begin_inset Formula $\forall\frac{m}{n}\in\mathbb{Q},\frac{m}{n}\cdot\frac{n}{m}=1$ +\end_inset + +). +\end_layout + +\begin_layout Standard +Una sucesión de números naturales +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}$ +\end_inset + + (o de cualquier subconjunto de +\begin_inset Formula $\mathbb{C}$ +\end_inset + +) es +\series bold +eventualmente periódica +\series default + si +\begin_inset Formula $\exists m\in\mathbb{N},q\in\mathbb{N}^{*}:\forall i\geq m,a_{i}=a_{i+q}$ +\end_inset + +. + Al menor +\begin_inset Formula $m$ +\end_inset + + que satisface la condición se le llama +\series bold +término inicial del período +\series default +, y al menor +\begin_inset Formula $q$ +\end_inset + +, +\series bold +período +\series default +. + Una sucesión eventualmente periódica con +\begin_inset Formula $p=1$ +\end_inset + + se dice que es +\series bold +eventualmente constante +\series default +\SpecialChar endofsentence + Por otro lado, una sucesión de naturales +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}$ +\end_inset + + es +\series bold +decimal +\series default + si +\begin_inset Formula $a_{n}\in\{0,\dots,9\}$ +\end_inset + + para +\begin_inset Formula $n>0$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Para todo +\begin_inset Formula $\alpha\in\mathbb{Q}$ +\end_inset + + con +\begin_inset Formula $\alpha\geq0$ +\end_inset + +, existe una única sucesión decimal eventualmente periódica de naturales + +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}$ +\end_inset + + tal que +\begin_inset Formula $0\leq\alpha-a_{0}-\frac{a_{1}}{10}-\dots-\frac{a_{n}}{10^{n}}<\frac{1}{10^{n}}$ +\end_inset + + para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. + Esta relación determina una biyección entre los racionales positivos y + las sucesiones decimales eventualmente periódicas que no son eventualmente + constantes con término inicial 9. +\end_layout + +\begin_layout Standard + +\series bold +Demostración. + +\series default + Tomamos +\begin_inset Formula $\alpha=\frac{k}{d}$ +\end_inset + + con +\begin_inset Formula $k\geq0$ +\end_inset + +, +\begin_inset Formula $d>0$ +\end_inset + + y +\begin_inset Formula $\text{mcd}(k,d)=1$ +\end_inset + + y definimos +\begin_inset Formula $a_{0}=E(\alpha)$ +\end_inset + + y +\begin_inset Formula $r_{0}$ +\end_inset + + tal que +\begin_inset Formula $\alpha=a_{0}+\frac{r_{0}}{d}$ +\end_inset + +, de modo que +\begin_inset Formula $0\leq r_{0}<d$ +\end_inset + +. + Definimos entonces por recurrencia +\begin_inset Formula $a_{n+1}=E(\frac{10r_{n}}{d})$ +\end_inset + + y +\begin_inset Formula $\frac{10r_{n}}{d}=a_{n+1}+\frac{r_{n+1}}{d}$ +\end_inset + +, de modo que +\begin_inset Formula $0\leq r_{n+1}<d$ +\end_inset + +, y también +\begin_inset Formula $S_{n}=a_{0}+a_{1}10^{-1}+\dots+a_{n}10^{-n}$ +\end_inset + +. + A continuación probamos las siguientes afirmaciones: +\end_layout + +\begin_layout Enumerate + +\series bold +Decimal: +\series default + +\begin_inset Formula $0\leq a_{n}<10$ +\end_inset + +. +\begin_inset Formula +\[ +0\leq a_{n+1}\leq a_{n+1}+\frac{r_{n+1}}{d}=\frac{10r_{n}}{d}<10 +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Lema: +\series default + +\begin_inset Formula $\alpha=S_{n}+\frac{r_{n}}{d}10^{-n}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $\alpha=a_{0}+\frac{r_{0}}{d}$ +\end_inset + +. + Ahora asumimos que esto se cumple para un cierto +\begin_inset Formula $n$ +\end_inset + + y demostramos que se cumple también para +\begin_inset Formula $n+1$ +\end_inset + +: +\begin_inset Formula +\[ +\alpha=S_{n}+\frac{10r_{n}}{d}10^{-(n+1)}=S_{n}+\left(a_{n+1}+\frac{r_{n+1}}{d}\right)10^{-(n+1)}=S_{n+1}+\frac{r_{n+1}}{d}10^{-(n+1)} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Aproximación: +\series default + +\begin_inset Formula $0\leq\alpha-S_{n}<10^{n}$ +\end_inset + + +\begin_inset Formula +\[ +0\leq\alpha-S_{n+1}=\frac{r_{n+1}}{d}10^{-(n+1)}<10^{-(n+1)} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Unicidad: +\series default + +\begin_inset Formula $a_{n+1}=E(10^{n+1}(\alpha-S_{n}))$ +\end_inset + +. +\begin_inset Formula +\[ +a_{n+1}=E\left(\frac{10r_{n}}{d}\right)=E\left(10^{n+1}10^{-n}\frac{r_{n}}{d}\right)=E(10^{n+1}(\alpha-S_{n})) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Periodicidad: +\series default + Como +\begin_inset Formula $0\leq r_{n}<d\forall n$ +\end_inset + +, los +\begin_inset Formula $r_{n}$ +\end_inset + + deben repetirse, es decir, +\begin_inset Formula $\exists m,q\in\mathbb{N},q>0:r_{m}=r_{m+q}$ +\end_inset + +. + Vemos por inducción que +\begin_inset Formula $a_{i}=a_{i+q}\forall i\geq m+1$ +\end_inset + +. + Para +\begin_inset Formula $i=m+1$ +\end_inset + +, +\begin_inset Formula $a_{m+1}$ +\end_inset + + y +\begin_inset Formula $r_{m+1}$ +\end_inset + + son cociente y resto de +\begin_inset Formula $10r_{m}/d$ +\end_inset + +, con lo que +\begin_inset Formula $a_{(m+q)+1}=a_{(m+1)+q}$ +\end_inset + + y +\begin_inset Formula $r_{(m+q)+1}=r_{(m+1)+q}$ +\end_inset + + son cociente y resto de +\begin_inset Formula $10r_{m+q}/d=10r_{m}/d$ +\end_inset + +, por lo que +\begin_inset Formula $a_{m+1}=a_{(m+1)+q}$ +\end_inset + + y +\begin_inset Formula $r_{m+1}=r_{(m+1)+q}$ +\end_inset + +. + El paso de inducción es análogo, partiendo de que +\begin_inset Formula $r_{i}=r_{i+q}$ +\end_inset + + para obtener que +\begin_inset Formula $a_{i+1}=a_{(i+q)+1}$ +\end_inset + + y +\begin_inset Formula $r_{i+1}=r_{(i+q)+1}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Estructuras algebraicas +\end_layout + +\begin_layout Standard +Un conjunto +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + con una operación suma +\begin_inset Formula $+:A\times A\rightarrow A$ +\end_inset + + es un +\series bold +grupo abeliano +\series default + si la suma es conmutativa, asociativa, existe un elemento neutro +\begin_inset Formula $0\in A$ +\end_inset + + y todo +\begin_inset Formula $a\in A$ +\end_inset + + tiene opuesto ( +\begin_inset Formula $b\in A$ +\end_inset + + con +\begin_inset Formula $a+b=0$ +\end_inset + +). +\end_layout + +\begin_layout Standard +Si además tiene una operación producto +\begin_inset Formula $\cdot:A\times A\rightarrow A$ +\end_inset + +, decimos que es un +\series bold +anillo +\series default + si con la suma es un grupo abeliano, el producto es asociativo, distribuye + a la suma y tiene neutro +\begin_inset Formula $1\in A$ +\end_inset + +. + Un anillo en que el producto es conmutativo es un +\series bold +anillo conmutativo +\series default +, y si además todo +\begin_inset Formula $a\in A\backslash\{0\}$ +\end_inset + + tiene inverso ( +\begin_inset Formula $b\in A$ +\end_inset + + con +\begin_inset Formula $ab=1$ +\end_inset + +), decimos que es un +\series bold +cuerpo +\series default +. +\end_layout + +\begin_layout Section +Números reales +\end_layout + +\begin_layout Standard +Podemos construirlos partiendo de los racionales de 3 formas: +\end_layout + +\begin_layout Enumerate +Identificándolos con los desarrollos decimales infinitos. +\end_layout + +\begin_layout Enumerate +Mediante las +\series bold +cortaduras de Dedekind +\series default +, conjuntos +\begin_inset Formula $\emptyset\neq\beta\subsetneq\mathbb{Q}$ +\end_inset + + acotados superiormente y sin máximo tales que +\begin_inset Formula $y<x\in\beta\implies y\in\beta$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Considerando el conjunto cociente de cierta relación de equivalencia de + las sucesiones de Cauchy en +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Asumimos que es un conjunto no vacío +\begin_inset Formula $(\mathbb{R},+,\cdot)$ +\end_inset + + que contiene a los racionales y satisface los siguientes axiomas: +\end_layout + +\begin_layout Enumerate + +\series bold +Axiomas de cuerpo: +\series default + +\begin_inset Formula $(\mathbb{R},+,\cdot)$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Enumerate + +\series bold +Axiomas de orden: +\series default + +\begin_inset Formula $\mathbb{R}$ +\end_inset + + está totalmente ordenado, +\begin_inset Formula $x<y\implies x+z<y+z$ +\end_inset + + y +\begin_inset Formula $x,y>0\implies xy>0$ +\end_inset + +. + +\begin_inset Formula $x\in\mathbb{R}$ +\end_inset + + es positivo si +\begin_inset Formula $x>0$ +\end_inset + + y negativo si +\begin_inset Formula $x<0$ +\end_inset + +. + De aquí se tiene que si +\begin_inset Formula $x>0$ +\end_inset + +, su opuesto +\begin_inset Formula $-x<0$ +\end_inset + +, pues +\begin_inset Formula $x>0\implies x-x>0-x\implies0>-x$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Axiomas de completitud: +\series default + Todo subconjunto no vacío de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + acotado superiormente posee supremo. +\end_layout + +\begin_layout Section +Números complejos +\end_layout + +\begin_layout Standard +Llamamos +\series bold +números complejos +\series default + al cuerpo definido por +\begin_inset Formula +\[ +\mathbb{C}=\{(a,b)|a,b\in\mathbb{R}\} +\] + +\end_inset + +junto con las operaciones +\begin_inset Formula $(a,b)+(c,d)=(a+c,b+d)$ +\end_inset + + y +\begin_inset Formula $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$ +\end_inset + +. + Se representan en el plano cartesiano en las coordenadas +\begin_inset Formula $(a,b)$ +\end_inset + +. + Identificamos +\begin_inset Formula $\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $\{(a,0)\}_{a\in\mathbb{R}}$ +\end_inset + +. + Definimos +\begin_inset Formula $i^{2}=-1$ +\end_inset + + y escribimos +\begin_inset Formula $a+bi=(a,b)$ +\end_inset + +. + Entonces +\begin_inset Formula $i^{n}=i^{m}\iff4|n-m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +conjugado +\series default + de +\begin_inset Formula $z=a+bi\in\mathbb{C}$ +\end_inset + + a +\begin_inset Formula $\overline{z}=a-bi$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overline{\overline{z}}=z$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overline{z+w}=\overline{z}+\overline{w}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overline{z\cdot w}=\overline{z}\cdot\overline{w}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $z\neq0\implies\overline{z^{-1}}=\overline{z}^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $z\in\mathbb{R}\iff\overline{z}=z$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $z=a+bi\in\mathbb{C}$ +\end_inset + +, su +\series bold +parte real +\series default + es +\begin_inset Formula $\text{Re}(z)=a$ +\end_inset + +, su +\series bold +parte imaginaria +\series default + es +\begin_inset Formula $\text{Im}(z)=b$ +\end_inset + +, su +\series bold +módulo +\series default + es +\begin_inset Formula $|z|=\sqrt{a^{2}+b^{2}}$ +\end_inset + + y su +\series bold +argumento +\series default + es +\begin_inset Formula $\text{Arg}(z)=\theta=\arctan\frac{b}{a}$ +\end_inset + +, estableciendo primero el cuadrante de forma que +\begin_inset Formula $\cos(\theta)=\frac{a}{|z|}$ +\end_inset + + y +\begin_inset Formula $\sin(\theta)=\frac{b}{|z|}$ +\end_inset + +, y es único salvo múltiplos de +\begin_inset Formula $2\pi$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|z|^{2}=z\overline{z}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|z|=|\overline{z}|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|zw|=|z||w|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|z^{-1}|=|z|^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|\text{Re}(z)|\leq|z|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad triangular: +\series default + +\begin_inset Formula $|z+w|\leq|z|+|w|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como +\begin_inset Formula $z\overline{w}=\overline{\overline{z}w}$ +\end_inset + +, entonces +\begin_inset Formula $z\overline{w}+\overline{z}w=2\text{Re}(z\overline{w})$ +\end_inset + +. + Así, +\begin_inset Formula $|z+w|^{2}=(z+w)(\overline{z}+\overline{w})=z\overline{z}+w\overline{w}+z\overline{w}+\overline{z}w=|z|^{2}+|w|^{2}+2\text{Re}(z\overline{w})\leq|z|^{2}+|w|^{2}+2|z\overline{w}|=(|z|+|w|)^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $z=a+bi$ +\end_inset + + con módulo +\begin_inset Formula $r$ +\end_inset + + y argumento +\begin_inset Formula $\theta$ +\end_inset + +, la +\series bold +representación polar +\series default + de +\begin_inset Formula $z$ +\end_inset + + es +\begin_inset Formula $z\mapsto(r,\theta)$ +\end_inset + +, pues +\begin_inset Formula $r$ +\end_inset + + es la distancia al centro cartesiano y +\begin_inset Formula $\theta$ +\end_inset + + el ángulo respecto del eje de abscisas. + Así, su +\series bold +representación trigonométrica +\series default + es +\begin_inset Formula $z\mapsto r(\cos\theta+i\sin\theta)$ +\end_inset + +, y si +\begin_inset Formula $z=(r,\theta)$ +\end_inset + + y +\begin_inset Formula $w=(s,\sigma)$ +\end_inset + +, entonces +\begin_inset Formula $zw=(rs,\theta+\sigma)$ +\end_inset + +. + De aquí se deduce el +\series bold +teorema de De Moivre: +\series default + Dado +\begin_inset Formula $z=(r,\theta)$ +\end_inset + +, +\begin_inset Formula $z^{n}=(r^{n},n\theta)$ +\end_inset + +. + Por tanto, si +\begin_inset Formula $z^{n}=(s,\alpha)$ +\end_inset + +, se tiene que +\begin_inset Formula $r=\sqrt[n]{s}$ +\end_inset + + y +\begin_inset Formula $\theta=\frac{\alpha+2k\pi}{n},k\in\mathbb{Z}$ +\end_inset + +, con lo que todo número complejo tiene exactamente +\begin_inset Formula $n$ +\end_inset + + raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas complejas. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $n\geq2$ +\end_inset + +, +\begin_inset Formula $\omega\in\mathbb{C}$ +\end_inset + + es una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima de la unidad si +\begin_inset Formula $\omega^{n}=1$ +\end_inset + +, y es una +\series bold +raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de la unidad +\series default + si además +\begin_inset Formula $\omega^{m}\neq1$ +\end_inset + + para +\begin_inset Formula $0<m<n$ +\end_inset + +. + Así, todo número complejo tiene +\begin_inset Formula +\[ +\phi(n)=|\{m\in\{1,\dots,n-1\}:\text{mcd}(m,n)=1\}| +\] + +\end_inset + +raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas primitivas. + Esta función se conoce como +\series bold +función +\begin_inset Formula $\phi$ +\end_inset + + de Euler +\series default +. +\end_layout + +\begin_layout Standard +Se tiene que +\begin_inset Formula +\begin{eqnarray*} +e^{x}=\sum_{n=0}^{\infty}\frac{x^{n}}{n!} & \cos x=\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n}}{(2n)!} & \sin x=\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{(2n+1)!} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Por tanto tiene sentido definir que +\begin_inset Formula $e^{ip}=\cos p+i\sin p$ +\end_inset + +, pues +\begin_inset Formula $e^{ip}=1+ip+\frac{(ip)^{2}}{2!}+\dots=1+ip-\frac{p^{2}}{2!}-\frac{ip^{3}}{3!}+\frac{p^{4}}{4!}+\dots=\cos p+i\sin p$ +\end_inset + +. + Por tanto, podemos escribir +\begin_inset Formula $z=(r,\theta)\in\mathbb{C}$ +\end_inset + + como +\begin_inset Formula $z=re^{\theta i}$ +\end_inset + +, y obtenemos la +\series bold +identidad de Euler +\series default +: +\begin_inset Formula +\[ +e^{\pi i}+1=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Conjuntos numerables y no numerables +\end_layout + +\begin_layout Standard +Un conjunto +\begin_inset Formula $A$ +\end_inset + + es +\series bold +a lo más numerable +\series default + si +\begin_inset Formula $|A|\leq|\mathbb{N}|$ +\end_inset + +, +\series bold +numerable +\series default + si +\begin_inset Formula $|A|=|\mathbb{N}|$ +\end_inset + + y +\series bold +más que numerable +\series default + si +\begin_inset Formula $|A|>|\mathbb{N}|$ +\end_inset + +. + +\series bold +Teorema de Bernstein +\series default + o +\series bold +de Cantor-Schröeder-Bernstein (CSB): +\series default + Dados dos conjuntos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + tales que existen +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + y +\begin_inset Formula $g:B\rightarrow A$ +\end_inset + + inyectivas, entonces existe una biyección entre ellos. +\end_layout + +\begin_layout Standard +\begin_inset Formula $|\mathbb{N}|=|\mathbb{N}\times\mathbb{N}|$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para simplificar, interpretamos +\begin_inset Formula $\mathbb{N}$ +\end_inset + + sin el 0. + Ordenamos las parejas de +\begin_inset Formula $\mathbb{N}\times\mathbb{N}$ +\end_inset + + en orden lexicográfico y luego vamos contando en diagonal. + Entonces en cada diagonal de +\begin_inset Formula $(1,n)$ +\end_inset + + a +\begin_inset Formula $(n,1)$ +\end_inset + + están los pares cuyas coordenadas suman +\begin_inset Formula $n+1$ +\end_inset + +, y al terminar la diagonal habremos contado +\begin_inset Formula $S(n)=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$ +\end_inset + + pares. + Entonces +\begin_inset Formula $(1,n)\mapsto S(n-1)+1$ +\end_inset + +, +\begin_inset Formula $(2,n-1)\mapsto S(n-1)+2$ +\end_inset + +, etc. + Así, definimos +\begin_inset Formula $\varphi:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $\varphi(i,j)=\frac{(i+j-1)(i+j-2)}{2}+i$ +\end_inset + + y vemos que es una biyección. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + +\begin_inset Formula $|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|<(0,1)=|\mathbb{R}|$ +\end_inset + +. + +\series bold +Demostración +\series default + de que +\begin_inset Formula $|\mathbb{N}|<(0,1)$ +\end_inset + +: La aplicación +\begin_inset Formula $f:\mathbb{N}\rightarrow(0,1)$ +\end_inset + + con +\begin_inset Formula $f(n)=\frac{1}{n+1}$ +\end_inset + + es inyectiva. + Para ver que no hay aplicaciones inyectivas +\begin_inset Formula $(0,1)\rightarrow\mathbb{N}$ +\end_inset + + usamos el +\series bold +método de la diagonal de Cantor +\series default +. + Supongamos que existe y hemos numerado todos los elementos en +\begin_inset Formula $(0,1)$ +\end_inset + +. + Si los escribimos en su forma decimal, tenemos +\begin_inset Formula +\begin{eqnarray*} +x_{1} & = & 0,x_{11}x_{12}x_{13}\cdots\\ +x_{2} & = & 0,x_{21}x_{22}x_{23}\cdots\\ +x_{3} & = & 0,x_{31}x_{32}x_{33}\cdots +\end{eqnarray*} + +\end_inset + +etcétera. + Ahora, sea +\begin_inset Formula $(y_{n})_{n}$ +\end_inset + + una secuencia de dígitos con +\begin_inset Formula $y_{n}\in\{0,\dots,9\}\backslash\{x_{nn}\}$ +\end_inset + + e +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $y_{1}=\{1,\dots,8\}\backslash\{x_{nn}\}$ +\end_inset + + (para evitar que el número formado sea 0 o 1). + Entonces este número difiere con cada uno de la lista en al menos un dígito. +\end_layout + +\end_body +\end_document diff --git a/cyn/n7.lyx b/cyn/n7.lyx new file mode 100644 index 0000000..875b9a2 --- /dev/null +++ b/cyn/n7.lyx @@ -0,0 +1,2681 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Aritmética de los enteros +\end_layout + +\begin_layout Standard +Propiedades de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Unicidad de los neutros: +\series default + +\begin_inset Formula $\exists!0\in\mathbb{Z}:\forall a\in\mathbb{Z},0+a=a$ +\end_inset + +; +\begin_inset Formula $\exists!1\in\mathbb{Z}:\forall a\in\mathbb{Z},1a=a$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Unicidad de los opuestos: +\series default + +\begin_inset Formula $\forall a\in\mathbb{Z},\exists!(-a)\in\mathbb{Z}:a+(-a)=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Cancelación en sumas: +\series default + +\begin_inset Formula $\forall a,b,c\in\mathbb{Z},(a+b=a+c\implies b=c)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Multiplicación por cero: +\series default + +\begin_inset Formula $\forall a\in\mathbb{Z},a0=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Reglas de signos: +\series default + +\begin_inset Formula $\forall a,b\in\mathbb{Z},(-(-a)=a\land a(-b)=(-a)b=-(ab)\land(-a)(-b)=ab)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Cancelación en productos: +\series default + +\begin_inset Formula $\forall a,b,c\in\mathbb{Z},a\neq0,(ab=ac\implies b=c)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la división entera: +\series default + +\begin_inset Formula $\forall a,b\in\mathbb{Z},\exists!q,r\in\mathbb{Z}:(a=bq+r\land0\leq r<|b|)$ +\end_inset + +. + Llamamos a +\begin_inset Formula $q$ +\end_inset + + el +\series bold +cociente +\series default + de la división y a +\begin_inset Formula $r$ +\end_inset + + el +\series bold +resto +\series default +\SpecialChar endofsentence + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a,b>0$ +\end_inset + + y +\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}:x=a-bn\}\subseteq\mathbb{N}$ +\end_inset + +. + Sabemos que +\begin_inset Formula $R\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $a=a-b\cdot0\in R$ +\end_inset + +. + Por tanto tiene primer elemento +\begin_inset Formula $r=a-bq\in R$ +\end_inset + +. + Si +\begin_inset Formula $r\geq b$ +\end_inset + + entonces +\begin_inset Formula $0\leq r-b\in R\#$ +\end_inset + +, luego +\begin_inset Formula $r<b$ +\end_inset + +. + Si +\begin_inset Formula $a<0$ +\end_inset + + y +\begin_inset Formula $b>0$ +\end_inset + + entonces +\begin_inset Formula $-a>0$ +\end_inset + + y +\begin_inset Formula $-a=bq+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<b$ +\end_inset + +. + Si +\begin_inset Formula $r=0$ +\end_inset + +, +\begin_inset Formula $a=b(-q)+0$ +\end_inset + +, y si +\begin_inset Formula $r\neq0$ +\end_inset + +, +\begin_inset Formula $a=b(-q)-r=b(-q-1)+(b-r)$ +\end_inset + +. + Si +\begin_inset Formula $a\neq0$ +\end_inset + + y +\begin_inset Formula $b<0$ +\end_inset + + entonces +\begin_inset Formula $-b>0$ +\end_inset + + y +\begin_inset Formula $a=(-b)q+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<-b=|b|$ +\end_inset + +, luego +\begin_inset Formula $a=b(-q)+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<|b|$ +\end_inset + +. + Finalmente, si +\begin_inset Formula $a=0$ +\end_inset + + entonces +\begin_inset Formula $0=b\cdot0+0$ +\end_inset + +. + Para la unicidad de +\begin_inset Formula $q$ +\end_inset + + y +\begin_inset Formula $r$ +\end_inset + +, supongamos +\begin_inset Formula $a=bq+r=bq'+r'$ +\end_inset + + con +\begin_inset Formula $0\leq r,r'<|b|$ +\end_inset + +. + Entonces +\begin_inset Formula $b(q-q')=r-r'$ +\end_inset + +, con lo que +\begin_inset Formula $|b||q-q'|=|r-r'|$ +\end_inset + +, pero como +\begin_inset Formula $0\leq r,r'<|b|$ +\end_inset + +, entonces +\begin_inset Formula $q-q'=0$ +\end_inset + + y +\begin_inset Formula $r-r'=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\series bold + +\begin_inset Formula $b$ +\end_inset + + divide a +\begin_inset Formula $a$ +\end_inset + + +\series default + o que +\series bold + +\begin_inset Formula $a$ +\end_inset + + es múltiplo de +\begin_inset Formula $b$ +\end_inset + + +\series default + ( +\begin_inset Formula $b|a$ +\end_inset + +) si +\begin_inset Formula $\exists c\in\mathbb{Z}:a=bc$ +\end_inset + +. + Si +\begin_inset Formula $a\neq0$ +\end_inset + +, también decimos que +\series bold + +\begin_inset Formula $b$ +\end_inset + + es divisor de +\begin_inset Formula $a$ +\end_inset + + +\series default +. + Para +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $b|a$ +\end_inset + + equivale a que la división entera de +\begin_inset Formula $a$ +\end_inset + + entre +\begin_inset Formula $b$ +\end_inset + + dé resto 0. +\end_layout + +\begin_layout Enumerate +La divisibilidad es reflexiva y transitiva. +\end_layout + +\begin_layout Enumerate +No es antisimétrica, pero +\begin_inset Formula $a|b\land b|a\implies|a|=|b|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\iff a|-b$ +\end_inset + +, con lo que si +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $-b$ +\end_inset + + tienen los mismos divisores. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\iff-a|b$ +\end_inset + +, luego +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $-a$ +\end_inset + + tienen los mismos múltiplos. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c|a\land c|b\implies c|ra+sb$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\land c|d\implies ac|bd$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\implies ca|cb$ +\end_inset + +. + El recíproco es cierto si +\begin_inset Formula $c\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $a|b\implies|a|\leq|b|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + +, su +\series bold +máximo común divisor +\series default + es +\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}:d|a\land d|b\}$ +\end_inset + + (excepción: +\begin_inset Formula $\text{mcd}(0,0)=0$ +\end_inset + +). + Este existe porque el conjunto de divisores comunes es no vacío (contiene + al 1) y finito, luego tiene máximo. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcd}(a,b)=\text{mcd}(a,|b|)=\text{mcd}(|a|,|b|)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcd}(a,0)=|a|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcd}(a,b)=0\iff a=b=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + + con alguno distinto de 0, +\begin_inset Formula $\text{mcd}(a,b)=\min\{ra+sb>0|r,s\in\mathbb{Z}\}$ +\end_inset + +, y todo divisor común de +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + lo es de +\begin_inset Formula $\text{mcd}(a,b)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $\emptyset\neq D=\{ra+sb>0|r,s\in\mathbb{Z}\}\subseteq\mathbb{Z}^{+}$ +\end_inset + +, existe +\begin_inset Formula $\delta=\min D$ +\end_inset + +. + Existen entonces +\begin_inset Formula $\alpha,\beta\in\mathbb{Z}$ +\end_inset + + tales que +\begin_inset Formula $\delta=\alpha a+\beta b$ +\end_inset + +. + Por el algoritmo de la división, +\begin_inset Formula $a=\delta q+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<\delta$ +\end_inset + +, luego +\begin_inset Formula $r=(1-\alpha q)a+(-q\beta)b$ +\end_inset + +, luego +\begin_inset Formula $r$ +\end_inset + + es combinación lineal y entonces +\begin_inset Formula $r\in D$ +\end_inset + + o +\begin_inset Formula $r=0$ +\end_inset + +. + Lo primero es imposible porque +\begin_inset Formula $r<\delta=\min D$ +\end_inset + +, luego +\begin_inset Formula $r=0$ +\end_inset + + y +\begin_inset Formula $\delta|a$ +\end_inset + +. + Análogamente +\begin_inset Formula $\delta|b$ +\end_inset + +. + Que sea máximo, y que todo divisor común de +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + lo sean de +\begin_inset Formula $\delta$ +\end_inset + +, se desprende de que +\begin_inset Formula $c|a\land c|b\implies c|\alpha a+\beta b=\delta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí que para todo +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + + existen +\begin_inset Formula $r,s\in\mathbb{Z}$ +\end_inset + + tales que +\begin_inset Formula $\text{mcd}(a,b)=ra+sb$ +\end_inset + +. + Una expresión de la forma +\begin_inset Formula $d=ra+sb$ +\end_inset + + es una +\series bold +identidad de Bézout +\series default +. + En particular, si +\begin_inset Formula $a=da'$ +\end_inset + + y +\begin_inset Formula $b=db'$ +\end_inset + + con +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + +, entonces +\begin_inset Formula $\text{mcd}(a',b')=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + + si y sólo si +\begin_inset Formula $d|a$ +\end_inset + +, +\begin_inset Formula $d|b$ +\end_inset + +, +\begin_inset Formula $c|a\land c|b\implies c|d$ +\end_inset + + y +\begin_inset Formula $d\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Las propiedades (1) y (3) son por definición, y la (2) la acabamos de demostrar. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $a\neq0$ +\end_inset + + o +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $d$ +\end_inset + + es el mayor entero que divide a +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + +. + Si +\begin_inset Formula $a=b=0$ +\end_inset + +, como +\begin_inset Formula $0|a,b$ +\end_inset + +, entonces +\begin_inset Formula $0|d$ +\end_inset + +, luego +\begin_inset Formula $d=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El máximo común divisor de +\begin_inset Formula $a_{1},\dots,a_{n}$ +\end_inset + + es +\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}:\forall i,d|a_{i}\}$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $d:=\text{mcd}(a_{1},\dots,a_{n})$ +\end_inset + +, como +\begin_inset Formula $d||a_{1},\dots,a_{n}$ +\end_inset + +, entonces +\begin_inset Formula $d|(f:=\text{mcd}(a_{1},a_{2})),a_{3},\dots,a_{n}|e:=\text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$ +\end_inset + + y por tanto +\begin_inset Formula $d|e$ +\end_inset + +. + Pero +\begin_inset Formula $e|f,a_{3},\dots,a_{n}$ +\end_inset + +, luego +\begin_inset Formula $e|a_{1},\dots,a_{n}$ +\end_inset + + y +\begin_inset Formula $e|d$ +\end_inset + +, y como +\begin_inset Formula $d,e\geq0$ +\end_inset + +, +\begin_inset Formula $d=e$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Dados +\begin_inset Formula $a_{1},\dots,a_{n}\in\mathbb{Z}^{*}$ +\end_inset + +, +\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\min\left\{ \sum_{i=1}^{n}r_{i}a_{i}>0|r_{i}\in\mathbb{Z}\right\} $ +\end_inset + +. + Además, +\begin_inset Formula $d=\text{mcd}(a_{1},\dots,a_{n})$ +\end_inset + + si y sólo si +\begin_inset Formula $d|a_{1},\dots,a_{n}$ +\end_inset + +, +\begin_inset Formula $c|a_{1},\dots,a_{n}\implies c|d$ +\end_inset + + y +\begin_inset Formula $d\geq0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + + son +\series bold +coprimos +\series default + o +\series bold +primos entre sí +\series default + si +\begin_inset Formula $\text{mcd}(a,b)=1$ +\end_inset + +, es decir, si +\begin_inset Formula $\exists\alpha,\beta\in\mathbb{Z}:\alpha a+\beta b=1$ +\end_inset + +. + Si +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son coprimos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|bc\implies a|c$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $1=\alpha a+\beta b$ +\end_inset + +, multiplicando por +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula $c=\alpha ac+\beta bc$ +\end_inset + +. + Como +\begin_inset Formula $a|bc$ +\end_inset + +, +\begin_inset Formula $c=\alpha ca+\beta na$ +\end_inset + + y +\begin_inset Formula $a|c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|c\land b|c\implies ab|c$ +\end_inset + +. +\begin_inset Formula +\begin{multline*} +\begin{array}{c} +1=ra+sb\\ +\frac{c}{a},\frac{c}{b}\in\mathbb{Z} +\end{array}\implies\frac{c}{a}=\frac{c}{a}ra+\frac{c}{a}sb=\frac{c}{b}rb+\frac{c}{a}sb=b\left(\frac{c}{b}r+\frac{c}{a}s\right)\implies\\ +\implies c=ab\left(\frac{c}{b}r+\frac{c}{a}s\right)\implies ab|c +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Se tiene que +\begin_inset Formula $\text{mcd}(a,b)=\text{mcd}(a-sb,b)=\text{mcd}(a,b-sa)$ +\end_inset + +, y en particular, si +\begin_inset Formula $b\neq0$ +\end_inset + + y +\begin_inset Formula $a=bq+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<b$ +\end_inset + +, entonces +\begin_inset Formula $\text{mcd}(a,b)=\text{mcd}(b,r)$ +\end_inset + +. + La aplicación repetida de lo anterior se conoce como +\series bold +algoritmo de Euclides +\series default +. + También permite obtener identidades de Bézout. + Si llamamos +\begin_inset Formula $(a,b)=\text{mcd}(a,b)$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray*} +a=bq_{1}+r_{1} & (a,b)=(b,r_{1}) & r_{1}<b\\ +b=r_{1}q_{2}+r_{2} & (b,r_{1})=(r_{1},r_{2}) & r_{2}<r_{1}\\ + & \vdots\\ +r_{n-2}=r_{n-1}q_{n}+0 & (r_{n-2},r_{n-1})=(r_{n-1},0)=r_{n-1} & 0<r_{n-1} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\begin_inset Formula $b>r_{1}>\dots\geq0$ +\end_inset + +, el algoritmo acaba en un número finito de pasos. + Además, cada dos pasos del algoritmo, el resto se reduce a la mitad. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a=bq+r$ +\end_inset + +, +\begin_inset Formula $b=rq'+s$ +\end_inset + + y +\begin_inset Formula $r=sq''+t$ +\end_inset + +, si +\begin_inset Formula $s\leq\frac{1}{2}r$ +\end_inset + + entonces +\begin_inset Formula $t<s\leq\frac{1}{2}r$ +\end_inset + + y hemos terminado, y si +\begin_inset Formula $s>\frac{1}{2}r$ +\end_inset + +, entonces +\begin_inset Formula $q''=1$ +\end_inset + + y +\begin_inset Formula $t=r-s<r-\frac{1}{2}r=\frac{1}{2}r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b\in\mathbb{Z}^{*}$ +\end_inset + +, su +\series bold +mínimo común múltiplo +\series default + es +\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}:a|m\land b|m\}$ +\end_inset + +. + Si +\begin_inset Formula $a$ +\end_inset + + o +\begin_inset Formula $b$ +\end_inset + + son 0, entonces +\begin_inset Formula $\text{mcm}(a,b)=0$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,b)=\text{mcm}(a,|b|)=\text{mcm}(|a|,|b|)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,b)=0\iff a=0\lor b=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,ab)=|ab|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Teorema: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,b)\text{mcd}(a,b)=|ab|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $a,b>0$ +\end_inset + +, sea +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + + con +\begin_inset Formula $a=da'$ +\end_inset + + y +\begin_inset Formula $b=db'$ +\end_inset + +, sea +\begin_inset Formula $m=a'b'd$ +\end_inset + +. + Entonces +\begin_inset Formula $a|m$ +\end_inset + + y +\begin_inset Formula $b|m$ +\end_inset + +. + Sea +\begin_inset Formula $c=\alpha a=\beta b$ +\end_inset + + con +\begin_inset Formula $\alpha,\beta\in\mathbb{Z}$ +\end_inset + +, entonces +\begin_inset Formula $\alpha da'=\beta db'$ +\end_inset + +, luego +\begin_inset Formula $\alpha a'=\beta b'$ +\end_inset + +, y como +\begin_inset Formula $a'$ +\end_inset + + y +\begin_inset Formula $b'$ +\end_inset + + son coprimos, +\begin_inset Formula $a'|\beta$ +\end_inset + + y +\begin_inset Formula $\beta=\gamma a'$ +\end_inset + + con +\begin_inset Formula $\gamma\in\mathbb{Z}$ +\end_inset + +. + Sustituyendo, +\begin_inset Formula $c=\gamma a'b=\gamma a'db'=\gamma m\geq m$ +\end_inset + +, luego +\begin_inset Formula $m=\text{mcm}(a,b)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|c\land b|c\implies\text{mcm}(a,b)|c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El mínimo común múltiplo de +\begin_inset Formula $a_{1},\dots,a_{n}$ +\end_inset + + es +\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}:\forall i,a_{i}|m\}$ +\end_inset + +. + Así, +\begin_inset Formula $m=\text{mcm}(a_{1},\dots,a_{n})$ +\end_inset + + si y sólo si +\begin_inset Formula $a_{1},\dots,a_{n}|m$ +\end_inset + +, +\begin_inset Formula $a_{1},\dots,a_{n}|c\implies m|c$ +\end_inset + + y +\begin_inset Formula $m\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una ecuación del tipo +\begin_inset Formula $ax+by=c$ +\end_inset + + en la que se buscan soluciones enteras es una +\series bold +ecuación diofántica lineal +\series default +, en este caso de dos variables. + Tiene solución si y sólo si +\begin_inset Formula $d=\text{mcd}(a,b)|c$ +\end_inset + +, y entonces estas son de la forma +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x & = & x_{0}+x'\\ +y & = & y_{0}+y' +\end{array}\right. +\] + +\end_inset + +donde +\begin_inset Formula $x_{0},y_{0}$ +\end_inset + + es una solución particular y +\begin_inset Formula $x',y'$ +\end_inset + + es una solución de la +\series bold +ecuación homogénea asociada +\series default +, +\begin_inset Formula $ax+by=0$ +\end_inset + +. + En particular, si +\begin_inset Formula $\alpha a+\beta b=d$ +\end_inset + + y +\begin_inset Formula $c=c'd$ +\end_inset + +, entonces +\begin_inset Formula $x_{0}=c'\alpha$ +\end_inset + + e +\begin_inset Formula $y_{0}=c'\beta$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $x,y\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $ax+by=c$ +\end_inset + +. + Entonces +\begin_inset Formula $d|ax+by=c$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Multiplicando la identidad de Bézout, +\begin_inset Formula $(c'\alpha)a+(c'\beta)b=c'd=c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + +, +\begin_inset Formula $a=a'd$ +\end_inset + + y +\begin_inset Formula $b=b'd$ +\end_inset + +, las soluciones de +\begin_inset Formula $ax+by=0$ +\end_inset + + son +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x & = & -b't\\ +y & = & a't +\end{array}\right. +\] + +\end_inset + +para cualquier +\begin_inset Formula $t\in\mathbb{Z}$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $ax=-by$ +\end_inset + +, luego +\begin_inset Formula $a'x=-b'y$ +\end_inset + +. + Como +\begin_inset Formula $a'$ +\end_inset + + y +\begin_inset Formula $b'$ +\end_inset + + son coprimos y +\begin_inset Formula $a'|-b'y$ +\end_inset + +, entonces +\begin_inset Formula $a'|y$ +\end_inset + +, luego existe +\begin_inset Formula $t\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $y=a't$ +\end_inset + +, con lo que +\begin_inset Formula $a'x=-b'a't$ +\end_inset + + y +\begin_inset Formula $x=-b't$ +\end_inset + +. + Multiplicando, todos los enteros de esta forma son solución. +\end_layout + +\begin_layout Standard +Un entero +\begin_inset Formula $p\neq1,-1$ +\end_inset + + es +\series bold +primo +\series default + si sus únicos divisores son 1, +\begin_inset Formula $-1$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $-p$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +p\text{ es primo}\iff(p|ab\implies p|a\lor p|b)\iff(p|a_{1}\cdots a_{n}\implies\exists i:p|a_{i}) +\] + +\end_inset + + +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Si +\begin_inset Formula $p|a$ +\end_inset + + ya está. + Si no, +\begin_inset Formula $\text{mcd}(p,a)=1$ +\end_inset + + y +\begin_inset Formula $p|b$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Por inducción con +\begin_inset Formula $a_{1}\cdots a_{n}=a_{1}(a_{2}\cdots a_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Si +\begin_inset Formula $a|p$ +\end_inset + + entonces +\begin_inset Formula $p=ab$ +\end_inset + + para cierto +\begin_inset Formula $b$ +\end_inset + +, y bien +\begin_inset Formula $p|a$ +\end_inset + + (con lo que +\begin_inset Formula $a=p$ +\end_inset + + o +\begin_inset Formula $a=-p$ +\end_inset + +) o +\begin_inset Formula $p|b$ +\end_inset + + (con lo que +\begin_inset Formula $a=1$ +\end_inset + + o +\begin_inset Formula $a=-1$ +\end_inset + +). +\end_layout + +\begin_layout Standard + +\series bold +Teorema Fundamental de la Aritmética: +\series default + Todo entero distinto de +\begin_inset Formula $0$ +\end_inset + + y +\begin_inset Formula $\pm1$ +\end_inset + + puede escribirse como producto de primos, y la factorización es única salvo + signo y orden. + +\series bold +Demostración: +\series default + Consideremos el conjunto de todos los positivos distintos de 1 que no se + factorizan en primos y, si este no es vacío, sea +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + su mínimo. + +\begin_inset Formula $a$ +\end_inset + + no es primo, luego +\begin_inset Formula $a=bc$ +\end_inset + + con +\begin_inset Formula $b,c\in\mathbb{Z}^{+}\backslash\{1\}$ +\end_inset + +. + Pero como +\begin_inset Formula $a$ +\end_inset + + es mínimo, entonces +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + sí se factorizan en primos, luego +\begin_inset Formula $a$ +\end_inset + + también. +\begin_inset Formula $\#$ +\end_inset + + Ahora sea +\begin_inset Formula $a=p_{1}\cdots p_{n}=q_{1}\cdots q_{m}$ +\end_inset + + con +\begin_inset Formula $p_{1}\cdots p_{n},q_{1}\cdots q_{m}$ +\end_inset + + primos y supongamos +\begin_inset Formula $n\leq m$ +\end_inset + +. + Procedemos por inducción sobre +\begin_inset Formula $n$ +\end_inset + +. + Si +\begin_inset Formula $n=1$ +\end_inset + +, +\begin_inset Formula $a=p_{1}=q_{1}\cdots q_{m}$ +\end_inset + +, y como +\begin_inset Formula $p_{1}$ +\end_inset + + no tiene más divisores primos que +\begin_inset Formula $-p_{1}$ +\end_inset + + y +\begin_inset Formula $p_{1}$ +\end_inset + +, debe ser +\begin_inset Formula $m=1$ +\end_inset + + y +\begin_inset Formula $q_{1}=p_{1}$ +\end_inset + +. + Si suponemos el resultado válido para +\begin_inset Formula $n-1$ +\end_inset + +, entonces +\begin_inset Formula $p_{n}$ +\end_inset + + divide a +\begin_inset Formula $a=q_{1}\cdots q_{n}$ +\end_inset + + y por tanto divide a algún +\begin_inset Formula $i\in\{1,\dots,m\}$ +\end_inset + +. + Reordenamos los factores para obtener +\begin_inset Formula $i=m$ +\end_inset + +, es decir +\begin_inset Formula $p_{n}|q_{m}$ +\end_inset + +, con lo que +\begin_inset Formula $q_{m}=\pm p_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $p_{1}\cdots p_{n-1}p_{n}=q_{1}\cdots q_{m-1}(\pm p_{n})$ +\end_inset + +, con lo que +\begin_inset Formula $p_{1}\cdots p_{n-1}=\pm q_{1}\cdots q_{m-1}$ +\end_inset + + y +\begin_inset Formula $n-1=m-1$ +\end_inset + +, luego +\begin_inset Formula $n=m$ +\end_inset + + y además, después de ordenar si hiciera falta, +\begin_inset Formula $q_{i}=\pm p_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, para +\begin_inset Formula $a\in\mathbb{Z},a\neq0,\pm1$ +\end_inset + +, +\begin_inset Formula $a=\pm p_{1}^{n_{1}}\cdots p_{s}^{n_{s}}$ +\end_inset + + y estos primos y sus exponentes son únicos (salvo orden). + Entonces podemos calcular el +\begin_inset Formula $\text{mcd}(a,b)$ +\end_inset + + tomando el producto de primos comunes a +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + elevados a la mínima potencia y el +\begin_inset Formula $\text{mcm}(a,b)$ +\end_inset + + tomando el producto de primos entre ambos elevados a la máxima potencia. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, el conjunto de los números primos es infinito. + Si no lo fuera, y fuera +\begin_inset Formula $\{p_{1},\dots,p_{n}\}$ +\end_inset + +, el número +\begin_inset Formula $N:=p_{1}\cdots p_{n}+1$ +\end_inset + + también lo es. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Section +Congruencias +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $x,y\in\mathbb{Z},m\in\mathbb{Z}^{+}$ +\end_inset + +, +\begin_inset Formula $x$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + + son +\series bold +congruentes módulo +\begin_inset Formula $m$ +\end_inset + + +\series default +, +\begin_inset Formula $x\equiv y\mod m$ +\end_inset + + ó +\begin_inset Formula $x\equiv y\,(m)$ +\end_inset + +, si +\begin_inset Formula $m|x-y$ +\end_inset + +. + Esta relación es de equivalencia. + Propiedades: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $r$ +\end_inset + + es el resto de +\begin_inset Formula $a/m$ +\end_inset + + entonces +\begin_inset Formula $a\equiv r\,(m)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv b\,(m)\land0\leq a,b<m\implies a=b$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv b\,(m)$ +\end_inset + + si y sólo si +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + dan el mismo resto entre +\begin_inset Formula $m$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv a'\,(m)\land b\equiv b'\,(m)\implies a+b\equiv a'+b'\,(m)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $a-a'=\lambda m$ +\end_inset + + y +\begin_inset Formula $b-b'=\mu m$ +\end_inset + + para ciertos +\begin_inset Formula $\lambda,\mu\in\mathbb{Z}$ +\end_inset + +, luego +\begin_inset Formula $(a+b)-(a'+b')=(\lambda+\mu)m$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv a'\,(m)\land b\equiv b'\,(m)\implies ab\equiv a'b'\,(m)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +ab-a'b'=(a'+\lambda m)(b'+\mu m)-a'b'=a'b'+(a'\mu+b'\lambda+\lambda\mu m)m-a'b'\equiv0\,(m) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv b\,(m)\implies ac\equiv bc\,(m)$ +\end_inset + +. + El recíproco es cierto si +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + son coprimos. +\begin_inset Newline newline +\end_inset + +La primera parte se sigue de lo anterior. + Para la segunda, +\begin_inset Formula $m|ac-bc=(a-b)c\implies m|a-b\implies a\equiv b\,(m)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c\neq0\implies(a\equiv b\,(m)\iff ac\equiv bc\,(mc))$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $a-b=\lambda m\iff ac-bc=\lambda mc$ +\end_inset + + +\end_layout + +\begin_layout Standard +Denotamos la clase de equivalencia (llamada +\series bold +clase de congruencia módulo +\begin_inset Formula $m$ +\end_inset + + +\series default +) de +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + por +\begin_inset Formula $\overline{a}$ +\end_inset + +, y su +\series bold +representante canónico +\series default + es el resto de +\begin_inset Formula $a/m$ +\end_inset + +. + Llamamos entonces +\begin_inset Formula $\mathbb{Z}/(m)$ +\end_inset + + o +\begin_inset Formula $\mathbb{Z}_{m}$ +\end_inset + + al conjunto cociente, que tiene exactamente +\begin_inset Formula $m$ +\end_inset + + elementos. + Así, para +\begin_inset Formula $\overline{a},\overline{b}\in\mathbb{Z}_{m}$ +\end_inset + +, definimos +\begin_inset Formula $\overline{a}+\overline{b}=\overline{a+b}$ +\end_inset + + y +\begin_inset Formula $\overline{a}\cdot\overline{b}=\overline{a\cdot b}$ +\end_inset + +, y vemos que están bien definidas y que +\begin_inset Formula $\mathbb{Z}_{m}$ +\end_inset + + es un anillo conmutativo. + Dado +\begin_inset Formula $\overline{a}\in\mathbb{Z}_{m}$ +\end_inset + +: +\begin_inset Formula +\begin{multline*} +\overline{a}\text{ tiene inverso (}\exists\overline{b}\in\mathbb{Z}_{m}:\overline{a}\cdot\overline{b}=1\text{)}\iff\overline{a}\text{ es cancelable (}\overline{a}\cdot\overline{x}=\overline{a}\cdot\overline{y}\implies\overline{x}=\overline{y}\text{)}\iff\\ +\iff\text{mcd}(a,m)=1 +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\implies2]$ +\end_inset + + Multiplicando por +\begin_inset Formula $\overline{a}^{-1}$ +\end_inset + + en ambos lados de +\begin_inset Formula $\overline{a}\cdot\overline{x}=\overline{a}\cdot\overline{y}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $2\implies3]$ +\end_inset + + Si +\begin_inset Formula $\text{mcd}(a,m)=d>1$ +\end_inset + +, sean +\begin_inset Formula $a=a'd$ +\end_inset + + y +\begin_inset Formula $m=m'd$ +\end_inset + +, entonces +\begin_inset Formula $\overline{a}\cdot\overline{m'}=\overline{a'}\cdot\overline{d}\cdot\overline{m'}=\overline{a'}\cdot\overline{m}=\overline{0}=\overline{a}\cdot\overline{0}$ +\end_inset + +, pero +\begin_inset Formula $\overline{m'}\neq\overline{0}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $3\implies1]$ +\end_inset + + Existen +\begin_inset Formula $r,s\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $ra+sm=1$ +\end_inset + +, luego +\begin_inset Formula $\overline{r}\cdot\overline{a}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $\mathbb{Z}_{m}$ +\end_inset + + es un cuerpo si y sólo si +\begin_inset Formula $m$ +\end_inset + + es primo, pues entonces todos los elementos tienen inverso. +\end_layout + +\begin_layout Standard +Un entero es divisible por 3 si y sólo si la suma de sus cifras lo es. + +\series bold +Demostración: +\series default + +\begin_inset Formula $3|m\iff m\equiv0\,(3)$ +\end_inset + +. + +\begin_inset Formula $10\equiv1\,(3)$ +\end_inset + +, luego +\begin_inset Formula $10^{s}\equiv1\,(3)$ +\end_inset + + para todo +\begin_inset Formula $s$ +\end_inset + + y si +\begin_inset Formula $m$ +\end_inset + + se escribe como +\begin_inset Formula $a_{n}\cdots a_{0}$ +\end_inset + +, entonces +\begin_inset Formula $m=a_{n}10^{n}+\dots+a_{0}\equiv a_{n}+\dots+a_{0}\,(3)$ +\end_inset + +. + De forma parecida se pueden sacar reglas para el 9 y el 11. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b,t\in\mathbb{Z}$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\overline{t}\text{ es sol. de }\overline{a}x=\overline{b}\in\mathbb{Z}_{m}\iff t\text{ es sol. de }ax\equiv b\,(m)\iff\exists s\in\mathbb{Z}:(t,s)\text{ es sol. de }ax-my=b +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +La ecuación +\begin_inset Formula $ax\equiv b\,(m)$ +\end_inset + + tiene solución si y sólo si +\begin_inset Formula $d:=\text{mcd}(a,m)|b$ +\end_inset + +, y las soluciones son todos los enteros +\begin_inset Formula $x=x_{0}+\lambda\frac{m}{d}$ +\end_inset + + con +\begin_inset Formula $\lambda\in\mathbb{Z}$ +\end_inset + +, donde +\begin_inset Formula $x_{0}$ +\end_inset + + es una solución particular, de modo que la ecuación tiene +\begin_inset Formula $d$ +\end_inset + + soluciones distintas módulo +\begin_inset Formula $m$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $ax\equiv b$ +\end_inset + + equivale a la ecuación diofántica +\begin_inset Formula $ax-my=b$ +\end_inset + +, que tiene solución si y sólo si +\begin_inset Formula $d|b$ +\end_inset + +. + Sean pues +\begin_inset Formula $b=db'$ +\end_inset + +, +\begin_inset Formula $a=da'$ +\end_inset + + y +\begin_inset Formula $m=dm'$ +\end_inset + +, entonces +\begin_inset Formula $ax-my=b$ +\end_inset + + equivale a +\begin_inset Formula $a'x-m'y=b'$ +\end_inset + + y las soluciones son +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x & = & x_{0}+m'\lambda\\ +y & = & y_{0}+a'\lambda +\end{array}\right. +\] + +\end_inset + +Entonces +\begin_inset Formula $x_{0}+\lambda m'\equiv x_{0}+\mu m'\,(m)\iff\lambda m'\equiv\mu m'\,(dm')\iff\lambda\equiv\mu\,(d)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Teorema Chino de los Restos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $b_{1},\dots,b_{k}\in\mathbb{Z}$ +\end_inset + + arbitrarios y +\begin_inset Formula $m_{1},\dots,m_{k}\in\mathbb{Z}^{+}$ +\end_inset + + coprimos dos a dos, el sistema de congruencias +\begin_inset Formula +\[ +\left\{ \begin{array}{cc} +x\equiv b_{1} & (m_{1})\\ +\vdots\\ +x\equiv b_{k} & (m_{k}) +\end{array}\right. +\] + +\end_inset + +tiene solución única módulo +\begin_inset Formula $M:=m_{1}\cdots m_{k}$ +\end_inset + +. + En particular, esta es +\begin_inset Formula $b_{1}M_{1}N_{1}+\dots+b_{k}M_{k}N_{k}$ +\end_inset + +, donde +\begin_inset Formula $M_{i}=\frac{M}{M_{i}}$ +\end_inset + + y +\begin_inset Formula $N_{i}$ +\end_inset + + es tal que +\begin_inset Formula $M_{i}N_{i}\equiv1\,(m_{i})$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $p$ +\end_inset + + es un número primo que divide a +\begin_inset Formula $M_{i}$ +\end_inset + + y +\begin_inset Formula $m_{i}$ +\end_inset + +, entonces divide a algún +\begin_inset Formula $m_{j}$ +\end_inset + + con +\begin_inset Formula $j\neq i$ +\end_inset + +, lo cual contradice que +\begin_inset Formula $\text{mcd}(m_{i},m_{j})=1$ +\end_inset + +, luego +\begin_inset Formula $M_{i}$ +\end_inset + + y +\begin_inset Formula $m_{i}$ +\end_inset + + son coprimos y +\begin_inset Formula $M_{i}$ +\end_inset + + tiene inverso +\begin_inset Formula $N_{i}$ +\end_inset + + módulo +\begin_inset Formula $m_{i}$ +\end_inset + +, teniendo en cuenta que +\begin_inset Formula $M_{i}N_{i}\equiv0\,(m_{j})$ +\end_inset + + para +\begin_inset Formula $j\neq i$ +\end_inset + +. + Entonces +\begin_inset Formula $x_{0}=b_{1}M_{1}N_{1}+\dots+b_{k}M_{k}N_{k}$ +\end_inset + + es solución del sistema. + Ahora bien, si +\begin_inset Formula $x$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + + son soluciones del sistema, +\begin_inset Formula $x,y\equiv b_{i}\,(m_{i})$ +\end_inset + +, luego +\begin_inset Formula $x\equiv y\,(m_{i})$ +\end_inset + +, con lo que +\begin_inset Formula $x-y$ +\end_inset + + es múltiplo de todos los +\begin_inset Formula $m_{i}$ +\end_inset + + y por tanto +\begin_inset Formula $x\equiv y\,(M)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si los módulos no son coprimos, intentamos simplificar cada ecuación dividiéndol +a entre un número, pues +\begin_inset Formula $a'dx\equiv b'd\,(m'd)\iff a'x\equiv b'\,(m')$ +\end_inset + +. + Si esto no es posible, resolvemos una ecuación y sustituimos en el resto. +\end_layout + +\begin_layout Section +Teoremas de Euler y Fermat +\end_layout + +\begin_layout Standard +Denotamos +\begin_inset Formula $\mathbb{Z}_{m}^{*}=\{x\in\mathbb{Z}_{m}|x\text{ es invertible}\}$ +\end_inset + +, y definimos la +\series bold +función +\begin_inset Formula $\phi$ +\end_inset + + de Euler +\series default + como +\begin_inset Formula $\phi:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\phi(m)=|\{x\in\mathbb{N}|1\leq x\leq m\land\text{mcd}(x,m)=1\}|=|\mathbb{Z}_{m}^{*}|$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p)=p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Los no-coprimos con +\begin_inset Formula $p^{n}$ +\end_inset + + son precisamente los múltiplos de +\begin_inset Formula $p$ +\end_inset + +, por lo que estos son +\begin_inset Formula $\frac{p^{n}}{p}=p^{n-1}$ +\end_inset + + y +\begin_inset Formula $\phi(p^{n})=p^{n}-p^{n-1}=p^{n}(p-1)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{mcd}(n,m)=1$ +\end_inset + +, entonces +\begin_inset Formula $\phi(nm)=\phi(n)\phi(m)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Definimos +\begin_inset Formula $f:\mathbb{Z}_{nm}^{*}\rightarrow\mathbb{Z}_{n}^{*}\times\mathbb{Z}_{m}^{*}$ +\end_inset + + tal que +\begin_inset Formula $f(x)=(x_{n},x_{m})$ +\end_inset + +, donde +\begin_inset Formula $x_{n}$ +\end_inset + + y +\begin_inset Formula $x_{m}$ +\end_inset + + son los restos de dividir +\begin_inset Formula $x$ +\end_inset + + entre +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + +, respectivamente. + Para abreviar asumimos que está bien definida, y pasamos a ver que es biyectiva. + Si +\begin_inset Formula $f(x)=(x_{n},x_{m})=f(y)$ +\end_inset + + entonces +\begin_inset Formula $x\equiv y\,(m)$ +\end_inset + + y +\begin_inset Formula $x\equiv y\,(n)$ +\end_inset + +, luego +\begin_inset Formula $nm|(x-y)$ +\end_inset + + y en +\begin_inset Formula $\mathbb{Z}_{nm}^{*}$ +\end_inset + + es inyectiva. + Para ver que es suprayectiva, consideramos +\begin_inset Formula $(a,b)\in\mathbb{Z}_{n}^{*}\times\mathbb{Z}_{m}^{*}$ +\end_inset + +. + Al existir una identidad de Bézout +\begin_inset Formula $1=rn+sm$ +\end_inset + +, podemos hacer +\begin_inset Formula $x=brn+asm$ +\end_inset + +, con lo que +\begin_inset Formula $x\equiv a\,(n)$ +\end_inset + + y +\begin_inset Formula $x\equiv b\,(m)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $m=p_{1}^{n_{1}}\cdots p_{s}^{n_{s}}$ +\end_inset + + es la descomposición de +\begin_inset Formula $m$ +\end_inset + + en factores primos, entonces +\begin_inset Formula +\[ +\phi(m)=\prod_{i=1}^{s}p_{i}^{n_{i}-1}(p_{i}-1)=m\left(1-\frac{1}{p_{1}}\right)\cdots\left(1-\frac{1}{p_{s}}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Euler: +\series default + Sea +\begin_inset Formula $1<m\in\mathbb{Z}$ +\end_inset + +. + Si +\begin_inset Formula $a$ +\end_inset + + es coprimo con +\begin_inset Formula $m$ +\end_inset + + entonces +\begin_inset Formula $a^{\phi(m)}\equiv1\,(m)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Esto equivale a que +\begin_inset Formula $\overline{a}^{\phi(m)}=\overline{1}\in\mathbb{Z}_{m}$ +\end_inset + +. + Sea +\begin_inset Formula $\mathbb{Z}_{m}^{*}=\{\overline{x_{1}},\dots,\overline{x_{\phi(m)}}\}$ +\end_inset + + y +\begin_inset Formula $\overline{a}\cdot\mathbb{Z}_{m}^{*}=\{\overline{a}\overline{x}|\overline{x}\in\mathbb{Z}_{m}^{*}\}$ +\end_inset + +. + Demostramos que +\begin_inset Formula $\overline{a}\cdot\mathbb{Z}_{m}^{*}=\mathbb{Z}_{m}^{*}$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $x=\overline{ax_{i}}\in\overline{a}\cdot\mathbb{Z}_{m}^{*}\implies x\overline{a}^{-1}\overline{x_{i}}^{-1}=\overline{1}\implies x\in\mathbb{Z}_{m}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\overline{x_{i}}\in\mathbb{Z}_{m}^{*}\implies\overline{x_{i}}=\overline{a}\,\overline{a}^{-1}\overline{x_{i}}\in\overline{a}\cdot\mathbb{Z}_{m}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Entonces +\begin_inset Formula $\prod_{i=1}^{\phi(m)}\overline{x}_{i}=\prod_{i=1}^{\phi(m)}\overline{ax_{i}}=\overline{a}^{\phi(m)}\prod_{i=1}^{\phi(m)}\overline{x_{i}}$ +\end_inset + +, y dividiendo entre +\begin_inset Formula $\prod_{i=1}^{\phi(m)}\overline{x_{i}}$ +\end_inset + +, porque es invertible, se obtiene el resultado. +\end_layout + +\begin_layout Standard + +\series bold +Teorema Pequeño de Fermat: +\series default + Si +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + es un número primo que no divide a +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula $a^{p-1}\equiv1\,(p)$ +\end_inset + +, y para todo +\begin_inset Formula $x\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $x^{p}\equiv x\,(p)$ +\end_inset + +. + Esto se deriva del teorema de Euler y de que +\begin_inset Formula $\phi(p)=p-1$ +\end_inset + +. +\end_layout + +\end_body +\end_document diff --git a/cyn/n8.lyx b/cyn/n8.lyx new file mode 100644 index 0000000..1249714 --- /dev/null +++ b/cyn/n8.lyx @@ -0,0 +1,954 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Polinomios con coeficientes en un cuerpo +\end_layout + +\begin_layout Standard +Un +\series bold +polinomio +\series default + con coeficientes en el cuerpo +\begin_inset Formula $K$ +\end_inset + + es una expresión de la forma +\begin_inset Formula +\[ +a_{0}+a_{1}X+a_{2}X^{2}+\dots+a_{n}X^{n}=\sum_{i=0}^{n}a_{i}X_{i} +\] + +\end_inset + +con +\begin_inset Formula $a_{0},\dots,a_{n}\in K$ +\end_inset + +. + El símbolo +\begin_inset Formula $X$ +\end_inset + + se llama +\series bold +indeterminada +\series default + y llamamos +\series bold +coeficiente +\series default + de grado +\begin_inset Formula $i$ +\end_inset + + a +\begin_inset Formula $a_{i}$ +\end_inset + +, +\series bold +término independiente +\series default + a +\begin_inset Formula $a_{0}$ +\end_inset + + y +\series bold +coeficiente principal +\series default + o +\series bold +líder +\series default + a +\begin_inset Formula $a_{n}$ +\end_inset + + si es +\begin_inset Formula $a_{n}\neq0$ +\end_inset + +. + Un polinomio es +\series bold +mónico +\series default + si +\begin_inset Formula $a_{n}=1$ +\end_inset + +. + Los polinomios de forma +\begin_inset Formula $a_{0}$ +\end_inset + + se llaman +\series bold +constantes +\series default + y los identificamos con los elementos de +\begin_inset Formula $K$ +\end_inset + +. + El conjunto de todos los polinomios con coeficientes en +\begin_inset Formula $K$ +\end_inset + + se denota +\begin_inset Formula $K[X]$ +\end_inset + +, y dos polinomios +\begin_inset Formula $P=a_{0}+\dots+a_{n}X^{n},Q=b_{0}+\dots+b_{m}X^{m}\in K[X]$ +\end_inset + + con +\begin_inset Formula $n\leq m$ +\end_inset + + son iguales si +\begin_inset Formula $a_{i}=b_{i}$ +\end_inset + + para +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + + y +\begin_inset Formula $b_{j}=0$ +\end_inset + + para +\begin_inset Formula $j\in\{n+1,\dots,m\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $P+Q=(a_{0}+b_{0})+(a_{1}+b_{1})X+\dots+(a_{n}+b_{n})X^{n}$ +\end_inset + +, y +\begin_inset Formula $PQ=c_{0}+c_{1}X+\dots+c_{n+m}X^{n+m}$ +\end_inset + + si +\begin_inset Formula $c_{k}=\sum_{i+j=k}a_{i}b_{j}=a_{0}b_{k}+a_{1}b_{k-1}+\dots+a_{k}b_{0}$ +\end_inset + +. + Así, +\begin_inset Formula $K[X]$ +\end_inset + + es un anillo conmutativo. +\end_layout + +\begin_layout Standard +\begin_inset Formula $P$ +\end_inset + + tiene +\series bold +grado +\series default + +\begin_inset Formula $n$ +\end_inset + + si +\begin_inset Formula $P=\sum_{i=0}^{n}a_{i}X^{i}$ +\end_inset + + con +\begin_inset Formula $a_{n}\neq0$ +\end_inset + +, y se denota con +\begin_inset Formula $\text{gr}(P)$ +\end_inset + +. + Por convención, si +\begin_inset Formula $P(X)=0$ +\end_inset + +, +\begin_inset Formula $\text{gr}(P)=-\infty$ +\end_inset + +. + Si tomamos el convenio de que +\begin_inset Formula $-\infty+n=-\infty$ +\end_inset + +, +\begin_inset Formula $(-\infty)+(-\infty)=-\infty$ +\end_inset + + y +\begin_inset Formula $-\infty<n$ +\end_inset + +, se tiene que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(PQ)=\text{gr}(P)+\text{gr}(Q)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(P+Q)\leq\max\{\text{gr}(P),\text{gr}(Q)\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $PQ=0\implies P=0\lor Q=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists P^{-1}:P^{-1}P=1\iff\text{gr}(P)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Se define el +\series bold +valor de +\begin_inset Formula $P(x)$ +\end_inset + + en +\begin_inset Formula $b$ +\end_inset + + +\series default + como +\begin_inset Formula $P(b)=a_{0}+a_{1}b+\dots+a_{n}b^{n}\in K$ +\end_inset + +, con lo que +\begin_inset Formula $P$ +\end_inset + + define una aplicación +\begin_inset Formula $P:K\rightarrow K$ +\end_inset + + que llamamos +\series bold +función polinomial asociada a +\begin_inset Formula $K$ +\end_inset + + +\series default +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la división: +\series default + Para +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + existen dos únicos polinomios, +\begin_inset Formula $Q$ +\end_inset + + ( +\series bold +cociente +\series default +) y +\begin_inset Formula $R$ +\end_inset + + ( +\series bold +resto +\series default +) en +\begin_inset Formula $K[X]$ +\end_inset + + tales que +\begin_inset Formula $A=BQ+R$ +\end_inset + + y +\begin_inset Formula $\text{gr}(R)<\text{gr}(B)$ +\end_inset + +. + +\series bold +Teorema del resto: +\series default + El resto de la división de +\begin_inset Formula $P/X-a$ +\end_inset + + es +\begin_inset Formula $P(a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula $A$ +\end_inset + + divide a +\begin_inset Formula $B$ +\end_inset + +, o que +\begin_inset Formula $B$ +\end_inset + + es múltiplo de +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $A|B$ +\end_inset + +) si +\begin_inset Formula $\exists C:B=AC$ +\end_inset + +. + Si +\begin_inset Formula $A|B\neq0$ +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + es un +\series bold +divisor +\series default + de +\begin_inset Formula $B$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A|B\land A|C\implies A|PB+QC$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A|B\land B|C\implies A|C$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Los polinomios de la forma +\begin_inset Formula $\lambda A$ +\end_inset + + para +\begin_inset Formula $0\neq\lambda\in K$ +\end_inset + + se llaman +\series bold +polinomios asociados +\series default + de +\begin_inset Formula $A$ +\end_inset + +. + Cada polinomio tiene un único polinomio asociado mónico. +\end_layout + +\begin_layout Standard +\begin_inset Formula $D$ +\end_inset + + es el máximo común divisor de +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + si +\begin_inset Formula $D|A,B$ +\end_inset + +, +\begin_inset Formula $S|A,B\implies S|D$ +\end_inset + + y +\begin_inset Formula $D$ +\end_inset + + es mónico. + Si +\begin_inset Formula $D'$ +\end_inset + + verifica las dos primeras condiciones, entonces es asociado a +\begin_inset Formula $D$ +\end_inset + +. + Además, si +\begin_inset Formula $A,B\neq0$ +\end_inset + +, entonces +\begin_inset Formula $D$ +\end_inset + + es el único polinomio mónico de grado mínimo que es combinación lineal + de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + son coprimos o primos entre sí si +\begin_inset Formula $\text{mcd}(A,B)=1$ +\end_inset + +, es decir, si existen +\begin_inset Formula $S,T\in K[X]$ +\end_inset + + tales que +\begin_inset Formula $SA+TB=1$ +\end_inset + +. + En tal caso, +\begin_inset Formula $A|BC\implies A|C$ +\end_inset + +. + Además, si +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + con alguno de los dos no nulo y +\begin_inset Formula $D=\text{mcd}(A,B)$ +\end_inset + +, entonces +\begin_inset Formula $\frac{A}{D}$ +\end_inset + + y +\begin_inset Formula $\frac{B}{D}$ +\end_inset + + son coprimos. +\end_layout + +\begin_layout Standard +\begin_inset Formula $M$ +\end_inset + + es el mínimo común múltiplo de +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + si +\begin_inset Formula $A,B|M$ +\end_inset + +, +\begin_inset Formula $A,B|N\implies M|N$ +\end_inset + + y +\begin_inset Formula $M$ +\end_inset + + es mónico. + Si +\begin_inset Formula $M'$ +\end_inset + + cumple las dos primeras condiciones, entonces es asociado a +\begin_inset Formula $M$ +\end_inset + +. + Además, existe +\begin_inset Formula $\mu\in K$ +\end_inset + + tal que +\begin_inset Formula $\text{mcm}(A,B)=\mu\frac{AB}{\text{mcd}(A,B)}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Raíces de polinomios +\end_layout + +\begin_layout Standard +\begin_inset Formula $r\in K$ +\end_inset + + es una +\series bold +raíz +\series default + de +\begin_inset Formula $P\in K[X]$ +\end_inset + + si +\begin_inset Formula $P(r)=0$ +\end_inset + +. + Si +\begin_inset Formula $\frac{p}{q}$ +\end_inset + +, con +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + coprimos, es raíz de +\begin_inset Formula $P$ +\end_inset + +, entonces +\begin_inset Formula $p|a_{0}$ +\end_inset + + y +\begin_inset Formula $q|a_{n}$ +\end_inset + +. + La +\series bold +regla de Ruffini +\series default + se basa en que +\begin_inset Formula $a$ +\end_inset + + es raíz de +\begin_inset Formula $P$ +\end_inset + + si y sólo si +\begin_inset Formula $X-a|P$ +\end_inset + +. + Así, decimos que +\begin_inset Formula $a$ +\end_inset + + es una raíz de +\series bold +multiplicidad +\begin_inset Formula $s\geq1$ +\end_inset + + +\series default + de +\begin_inset Formula $P$ +\end_inset + + si +\begin_inset Formula $(X-a)^{s}|P$ +\end_inset + + pero no +\begin_inset Formula $(X-a)^{s+1}|P$ +\end_inset + +. + Una raíz es +\series bold +múltiple +\series default + si tiene multiplicidad mayor que 1, de lo contrario es una raíz +\series bold +simple +\series default +. + Si +\begin_inset Formula $\text{gr}(P)=n\neq-\infty$ +\end_inset + +, entonces +\begin_inset Formula $P$ +\end_inset + + tiene a lo sumo +\begin_inset Formula $n$ +\end_inset + + raíces en +\begin_inset Formula $K$ +\end_inset + +, contando cada raíz tantas veces como su multiplicidad. + Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(P)=n$ +\end_inset + + y existen +\begin_inset Formula $m>n$ +\end_inset + + raíces de +\begin_inset Formula $P$ +\end_inset + + en +\begin_inset Formula $K$ +\end_inset + +, entonces +\begin_inset Formula $P=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(P)=n\geq0$ +\end_inset + + y existen +\begin_inset Formula $a_{1},\dots,a_{m}\in K$ +\end_inset + + tales que +\begin_inset Formula $P(a_{i})=Q(a_{i})$ +\end_inset + + con +\begin_inset Formula $m>n$ +\end_inset + +, entonces +\begin_inset Formula $P=Q$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es un cuerpo infinito y +\begin_inset Formula $P,Q\in K[X]$ +\end_inset + + son distintos, entonces las funciones +\begin_inset Formula $P,Q:K\rightarrow K$ +\end_inset + + son distintas. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $P=a_{0}+\dots+a_{n}X^{n}\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)=n$ +\end_inset + + y raíces +\begin_inset Formula $r_{1},\dots,r_{n}$ +\end_inset + + (no necesariamente distintas), entonces +\begin_inset Formula $P=a_{n}(X-r_{1})\cdots(X-r_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Factorización y raíces de polinomios +\end_layout + +\begin_layout Standard +\begin_inset Formula $P\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)>0$ +\end_inset + + es +\series bold +irreducible +\series default + o +\series bold +primo +\series default + si +\begin_inset Formula $Q|P\implies\text{gr}(Q)=0\lor\exists k\in K:Q=kP$ +\end_inset + +. + Así: +\begin_inset Formula +\[ +P\text{ es irreducible}\iff(P|QR\implies P|Q\lor P|R)\iff(P|Q_{1}\cdots Q_{n}\implies\exists i:P|Q_{i}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Todo +\begin_inset Formula $P\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)\geq1$ +\end_inset + + factoriza como producto de polinomios irreducibles, y esta factorización + es única salvo asociados y orden. +\end_layout + +\begin_layout Section +Polinomios irreducibles en +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + y +\begin_inset Formula $\mathbb{C}[X]$ +\end_inset + +. + Teorema Fundamental del Álgebra +\end_layout + +\begin_layout Standard +El +\series bold +Teorema Fundamental del Álgebra +\series default + afirma que todo +\begin_inset Formula $P\in\mathbb{C}[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)>0$ +\end_inset + + tiene al menos una raíz en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P\in\mathbb{C}[X]$ +\end_inset + + es irreducible si y sólo si +\begin_inset Formula $\text{gr}(P)=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall P\in\mathbb{C}[X],\text{gr}(P)=n\geq1,\exists r,r_{1},\dots,r_{n}\in\mathbb{C}:P=r(X-r_{1})\cdots(X-r_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $z\in\mathbb{C}$ +\end_inset + + es raíz de +\begin_inset Formula $P\in\mathbb{R}[X]$ +\end_inset + +, entonces +\begin_inset Formula $\overline{z}$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P\in\mathbb{R}[X]$ +\end_inset + + es irreducible, entonces, o +\begin_inset Formula $\text{gr}(P)=1$ +\end_inset + +, o +\begin_inset Formula $\text{gr}(P)=2$ +\end_inset + + y no tiene raíces reales. +\end_layout + +\end_body +\end_document |
