diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /cyn/n7.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'cyn/n7.lyx')
| -rw-r--r-- | cyn/n7.lyx | 2681 |
1 files changed, 2681 insertions, 0 deletions
diff --git a/cyn/n7.lyx b/cyn/n7.lyx new file mode 100644 index 0000000..875b9a2 --- /dev/null +++ b/cyn/n7.lyx @@ -0,0 +1,2681 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Aritmética de los enteros +\end_layout + +\begin_layout Standard +Propiedades de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Unicidad de los neutros: +\series default + +\begin_inset Formula $\exists!0\in\mathbb{Z}:\forall a\in\mathbb{Z},0+a=a$ +\end_inset + +; +\begin_inset Formula $\exists!1\in\mathbb{Z}:\forall a\in\mathbb{Z},1a=a$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Unicidad de los opuestos: +\series default + +\begin_inset Formula $\forall a\in\mathbb{Z},\exists!(-a)\in\mathbb{Z}:a+(-a)=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Cancelación en sumas: +\series default + +\begin_inset Formula $\forall a,b,c\in\mathbb{Z},(a+b=a+c\implies b=c)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Multiplicación por cero: +\series default + +\begin_inset Formula $\forall a\in\mathbb{Z},a0=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Reglas de signos: +\series default + +\begin_inset Formula $\forall a,b\in\mathbb{Z},(-(-a)=a\land a(-b)=(-a)b=-(ab)\land(-a)(-b)=ab)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Cancelación en productos: +\series default + +\begin_inset Formula $\forall a,b,c\in\mathbb{Z},a\neq0,(ab=ac\implies b=c)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la división entera: +\series default + +\begin_inset Formula $\forall a,b\in\mathbb{Z},\exists!q,r\in\mathbb{Z}:(a=bq+r\land0\leq r<|b|)$ +\end_inset + +. + Llamamos a +\begin_inset Formula $q$ +\end_inset + + el +\series bold +cociente +\series default + de la división y a +\begin_inset Formula $r$ +\end_inset + + el +\series bold +resto +\series default +\SpecialChar endofsentence + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a,b>0$ +\end_inset + + y +\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}:x=a-bn\}\subseteq\mathbb{N}$ +\end_inset + +. + Sabemos que +\begin_inset Formula $R\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $a=a-b\cdot0\in R$ +\end_inset + +. + Por tanto tiene primer elemento +\begin_inset Formula $r=a-bq\in R$ +\end_inset + +. + Si +\begin_inset Formula $r\geq b$ +\end_inset + + entonces +\begin_inset Formula $0\leq r-b\in R\#$ +\end_inset + +, luego +\begin_inset Formula $r<b$ +\end_inset + +. + Si +\begin_inset Formula $a<0$ +\end_inset + + y +\begin_inset Formula $b>0$ +\end_inset + + entonces +\begin_inset Formula $-a>0$ +\end_inset + + y +\begin_inset Formula $-a=bq+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<b$ +\end_inset + +. + Si +\begin_inset Formula $r=0$ +\end_inset + +, +\begin_inset Formula $a=b(-q)+0$ +\end_inset + +, y si +\begin_inset Formula $r\neq0$ +\end_inset + +, +\begin_inset Formula $a=b(-q)-r=b(-q-1)+(b-r)$ +\end_inset + +. + Si +\begin_inset Formula $a\neq0$ +\end_inset + + y +\begin_inset Formula $b<0$ +\end_inset + + entonces +\begin_inset Formula $-b>0$ +\end_inset + + y +\begin_inset Formula $a=(-b)q+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<-b=|b|$ +\end_inset + +, luego +\begin_inset Formula $a=b(-q)+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<|b|$ +\end_inset + +. + Finalmente, si +\begin_inset Formula $a=0$ +\end_inset + + entonces +\begin_inset Formula $0=b\cdot0+0$ +\end_inset + +. + Para la unicidad de +\begin_inset Formula $q$ +\end_inset + + y +\begin_inset Formula $r$ +\end_inset + +, supongamos +\begin_inset Formula $a=bq+r=bq'+r'$ +\end_inset + + con +\begin_inset Formula $0\leq r,r'<|b|$ +\end_inset + +. + Entonces +\begin_inset Formula $b(q-q')=r-r'$ +\end_inset + +, con lo que +\begin_inset Formula $|b||q-q'|=|r-r'|$ +\end_inset + +, pero como +\begin_inset Formula $0\leq r,r'<|b|$ +\end_inset + +, entonces +\begin_inset Formula $q-q'=0$ +\end_inset + + y +\begin_inset Formula $r-r'=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\series bold + +\begin_inset Formula $b$ +\end_inset + + divide a +\begin_inset Formula $a$ +\end_inset + + +\series default + o que +\series bold + +\begin_inset Formula $a$ +\end_inset + + es múltiplo de +\begin_inset Formula $b$ +\end_inset + + +\series default + ( +\begin_inset Formula $b|a$ +\end_inset + +) si +\begin_inset Formula $\exists c\in\mathbb{Z}:a=bc$ +\end_inset + +. + Si +\begin_inset Formula $a\neq0$ +\end_inset + +, también decimos que +\series bold + +\begin_inset Formula $b$ +\end_inset + + es divisor de +\begin_inset Formula $a$ +\end_inset + + +\series default +. + Para +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $b|a$ +\end_inset + + equivale a que la división entera de +\begin_inset Formula $a$ +\end_inset + + entre +\begin_inset Formula $b$ +\end_inset + + dé resto 0. +\end_layout + +\begin_layout Enumerate +La divisibilidad es reflexiva y transitiva. +\end_layout + +\begin_layout Enumerate +No es antisimétrica, pero +\begin_inset Formula $a|b\land b|a\implies|a|=|b|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\iff a|-b$ +\end_inset + +, con lo que si +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $-b$ +\end_inset + + tienen los mismos divisores. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\iff-a|b$ +\end_inset + +, luego +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $-a$ +\end_inset + + tienen los mismos múltiplos. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c|a\land c|b\implies c|ra+sb$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\land c|d\implies ac|bd$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|b\implies ca|cb$ +\end_inset + +. + El recíproco es cierto si +\begin_inset Formula $c\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $a|b\implies|a|\leq|b|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + +, su +\series bold +máximo común divisor +\series default + es +\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}:d|a\land d|b\}$ +\end_inset + + (excepción: +\begin_inset Formula $\text{mcd}(0,0)=0$ +\end_inset + +). + Este existe porque el conjunto de divisores comunes es no vacío (contiene + al 1) y finito, luego tiene máximo. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcd}(a,b)=\text{mcd}(a,|b|)=\text{mcd}(|a|,|b|)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcd}(a,0)=|a|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcd}(a,b)=0\iff a=b=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + + con alguno distinto de 0, +\begin_inset Formula $\text{mcd}(a,b)=\min\{ra+sb>0|r,s\in\mathbb{Z}\}$ +\end_inset + +, y todo divisor común de +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + lo es de +\begin_inset Formula $\text{mcd}(a,b)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $\emptyset\neq D=\{ra+sb>0|r,s\in\mathbb{Z}\}\subseteq\mathbb{Z}^{+}$ +\end_inset + +, existe +\begin_inset Formula $\delta=\min D$ +\end_inset + +. + Existen entonces +\begin_inset Formula $\alpha,\beta\in\mathbb{Z}$ +\end_inset + + tales que +\begin_inset Formula $\delta=\alpha a+\beta b$ +\end_inset + +. + Por el algoritmo de la división, +\begin_inset Formula $a=\delta q+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<\delta$ +\end_inset + +, luego +\begin_inset Formula $r=(1-\alpha q)a+(-q\beta)b$ +\end_inset + +, luego +\begin_inset Formula $r$ +\end_inset + + es combinación lineal y entonces +\begin_inset Formula $r\in D$ +\end_inset + + o +\begin_inset Formula $r=0$ +\end_inset + +. + Lo primero es imposible porque +\begin_inset Formula $r<\delta=\min D$ +\end_inset + +, luego +\begin_inset Formula $r=0$ +\end_inset + + y +\begin_inset Formula $\delta|a$ +\end_inset + +. + Análogamente +\begin_inset Formula $\delta|b$ +\end_inset + +. + Que sea máximo, y que todo divisor común de +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + lo sean de +\begin_inset Formula $\delta$ +\end_inset + +, se desprende de que +\begin_inset Formula $c|a\land c|b\implies c|\alpha a+\beta b=\delta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí que para todo +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + + existen +\begin_inset Formula $r,s\in\mathbb{Z}$ +\end_inset + + tales que +\begin_inset Formula $\text{mcd}(a,b)=ra+sb$ +\end_inset + +. + Una expresión de la forma +\begin_inset Formula $d=ra+sb$ +\end_inset + + es una +\series bold +identidad de Bézout +\series default +. + En particular, si +\begin_inset Formula $a=da'$ +\end_inset + + y +\begin_inset Formula $b=db'$ +\end_inset + + con +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + +, entonces +\begin_inset Formula $\text{mcd}(a',b')=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + + si y sólo si +\begin_inset Formula $d|a$ +\end_inset + +, +\begin_inset Formula $d|b$ +\end_inset + +, +\begin_inset Formula $c|a\land c|b\implies c|d$ +\end_inset + + y +\begin_inset Formula $d\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Las propiedades (1) y (3) son por definición, y la (2) la acabamos de demostrar. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $a\neq0$ +\end_inset + + o +\begin_inset Formula $b\neq0$ +\end_inset + +, +\begin_inset Formula $d$ +\end_inset + + es el mayor entero que divide a +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + +. + Si +\begin_inset Formula $a=b=0$ +\end_inset + +, como +\begin_inset Formula $0|a,b$ +\end_inset + +, entonces +\begin_inset Formula $0|d$ +\end_inset + +, luego +\begin_inset Formula $d=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El máximo común divisor de +\begin_inset Formula $a_{1},\dots,a_{n}$ +\end_inset + + es +\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}:\forall i,d|a_{i}\}$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $d:=\text{mcd}(a_{1},\dots,a_{n})$ +\end_inset + +, como +\begin_inset Formula $d||a_{1},\dots,a_{n}$ +\end_inset + +, entonces +\begin_inset Formula $d|(f:=\text{mcd}(a_{1},a_{2})),a_{3},\dots,a_{n}|e:=\text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$ +\end_inset + + y por tanto +\begin_inset Formula $d|e$ +\end_inset + +. + Pero +\begin_inset Formula $e|f,a_{3},\dots,a_{n}$ +\end_inset + +, luego +\begin_inset Formula $e|a_{1},\dots,a_{n}$ +\end_inset + + y +\begin_inset Formula $e|d$ +\end_inset + +, y como +\begin_inset Formula $d,e\geq0$ +\end_inset + +, +\begin_inset Formula $d=e$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Dados +\begin_inset Formula $a_{1},\dots,a_{n}\in\mathbb{Z}^{*}$ +\end_inset + +, +\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\min\left\{ \sum_{i=1}^{n}r_{i}a_{i}>0|r_{i}\in\mathbb{Z}\right\} $ +\end_inset + +. + Además, +\begin_inset Formula $d=\text{mcd}(a_{1},\dots,a_{n})$ +\end_inset + + si y sólo si +\begin_inset Formula $d|a_{1},\dots,a_{n}$ +\end_inset + +, +\begin_inset Formula $c|a_{1},\dots,a_{n}\implies c|d$ +\end_inset + + y +\begin_inset Formula $d\geq0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + + son +\series bold +coprimos +\series default + o +\series bold +primos entre sí +\series default + si +\begin_inset Formula $\text{mcd}(a,b)=1$ +\end_inset + +, es decir, si +\begin_inset Formula $\exists\alpha,\beta\in\mathbb{Z}:\alpha a+\beta b=1$ +\end_inset + +. + Si +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son coprimos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|bc\implies a|c$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $1=\alpha a+\beta b$ +\end_inset + +, multiplicando por +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula $c=\alpha ac+\beta bc$ +\end_inset + +. + Como +\begin_inset Formula $a|bc$ +\end_inset + +, +\begin_inset Formula $c=\alpha ca+\beta na$ +\end_inset + + y +\begin_inset Formula $a|c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|c\land b|c\implies ab|c$ +\end_inset + +. +\begin_inset Formula +\begin{multline*} +\begin{array}{c} +1=ra+sb\\ +\frac{c}{a},\frac{c}{b}\in\mathbb{Z} +\end{array}\implies\frac{c}{a}=\frac{c}{a}ra+\frac{c}{a}sb=\frac{c}{b}rb+\frac{c}{a}sb=b\left(\frac{c}{b}r+\frac{c}{a}s\right)\implies\\ +\implies c=ab\left(\frac{c}{b}r+\frac{c}{a}s\right)\implies ab|c +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Se tiene que +\begin_inset Formula $\text{mcd}(a,b)=\text{mcd}(a-sb,b)=\text{mcd}(a,b-sa)$ +\end_inset + +, y en particular, si +\begin_inset Formula $b\neq0$ +\end_inset + + y +\begin_inset Formula $a=bq+r$ +\end_inset + + con +\begin_inset Formula $0\leq r<b$ +\end_inset + +, entonces +\begin_inset Formula $\text{mcd}(a,b)=\text{mcd}(b,r)$ +\end_inset + +. + La aplicación repetida de lo anterior se conoce como +\series bold +algoritmo de Euclides +\series default +. + También permite obtener identidades de Bézout. + Si llamamos +\begin_inset Formula $(a,b)=\text{mcd}(a,b)$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray*} +a=bq_{1}+r_{1} & (a,b)=(b,r_{1}) & r_{1}<b\\ +b=r_{1}q_{2}+r_{2} & (b,r_{1})=(r_{1},r_{2}) & r_{2}<r_{1}\\ + & \vdots\\ +r_{n-2}=r_{n-1}q_{n}+0 & (r_{n-2},r_{n-1})=(r_{n-1},0)=r_{n-1} & 0<r_{n-1} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\begin_inset Formula $b>r_{1}>\dots\geq0$ +\end_inset + +, el algoritmo acaba en un número finito de pasos. + Además, cada dos pasos del algoritmo, el resto se reduce a la mitad. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a=bq+r$ +\end_inset + +, +\begin_inset Formula $b=rq'+s$ +\end_inset + + y +\begin_inset Formula $r=sq''+t$ +\end_inset + +, si +\begin_inset Formula $s\leq\frac{1}{2}r$ +\end_inset + + entonces +\begin_inset Formula $t<s\leq\frac{1}{2}r$ +\end_inset + + y hemos terminado, y si +\begin_inset Formula $s>\frac{1}{2}r$ +\end_inset + +, entonces +\begin_inset Formula $q''=1$ +\end_inset + + y +\begin_inset Formula $t=r-s<r-\frac{1}{2}r=\frac{1}{2}r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b\in\mathbb{Z}^{*}$ +\end_inset + +, su +\series bold +mínimo común múltiplo +\series default + es +\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}:a|m\land b|m\}$ +\end_inset + +. + Si +\begin_inset Formula $a$ +\end_inset + + o +\begin_inset Formula $b$ +\end_inset + + son 0, entonces +\begin_inset Formula $\text{mcm}(a,b)=0$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,b)=\text{mcm}(a,|b|)=\text{mcm}(|a|,|b|)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,b)=0\iff a=0\lor b=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,ab)=|ab|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Teorema: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{mcm}(a,b)\text{mcd}(a,b)=|ab|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $a,b>0$ +\end_inset + +, sea +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + + con +\begin_inset Formula $a=da'$ +\end_inset + + y +\begin_inset Formula $b=db'$ +\end_inset + +, sea +\begin_inset Formula $m=a'b'd$ +\end_inset + +. + Entonces +\begin_inset Formula $a|m$ +\end_inset + + y +\begin_inset Formula $b|m$ +\end_inset + +. + Sea +\begin_inset Formula $c=\alpha a=\beta b$ +\end_inset + + con +\begin_inset Formula $\alpha,\beta\in\mathbb{Z}$ +\end_inset + +, entonces +\begin_inset Formula $\alpha da'=\beta db'$ +\end_inset + +, luego +\begin_inset Formula $\alpha a'=\beta b'$ +\end_inset + +, y como +\begin_inset Formula $a'$ +\end_inset + + y +\begin_inset Formula $b'$ +\end_inset + + son coprimos, +\begin_inset Formula $a'|\beta$ +\end_inset + + y +\begin_inset Formula $\beta=\gamma a'$ +\end_inset + + con +\begin_inset Formula $\gamma\in\mathbb{Z}$ +\end_inset + +. + Sustituyendo, +\begin_inset Formula $c=\gamma a'b=\gamma a'db'=\gamma m\geq m$ +\end_inset + +, luego +\begin_inset Formula $m=\text{mcm}(a,b)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a|c\land b|c\implies\text{mcm}(a,b)|c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El mínimo común múltiplo de +\begin_inset Formula $a_{1},\dots,a_{n}$ +\end_inset + + es +\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}:\forall i,a_{i}|m\}$ +\end_inset + +. + Así, +\begin_inset Formula $m=\text{mcm}(a_{1},\dots,a_{n})$ +\end_inset + + si y sólo si +\begin_inset Formula $a_{1},\dots,a_{n}|m$ +\end_inset + +, +\begin_inset Formula $a_{1},\dots,a_{n}|c\implies m|c$ +\end_inset + + y +\begin_inset Formula $m\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una ecuación del tipo +\begin_inset Formula $ax+by=c$ +\end_inset + + en la que se buscan soluciones enteras es una +\series bold +ecuación diofántica lineal +\series default +, en este caso de dos variables. + Tiene solución si y sólo si +\begin_inset Formula $d=\text{mcd}(a,b)|c$ +\end_inset + +, y entonces estas son de la forma +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x & = & x_{0}+x'\\ +y & = & y_{0}+y' +\end{array}\right. +\] + +\end_inset + +donde +\begin_inset Formula $x_{0},y_{0}$ +\end_inset + + es una solución particular y +\begin_inset Formula $x',y'$ +\end_inset + + es una solución de la +\series bold +ecuación homogénea asociada +\series default +, +\begin_inset Formula $ax+by=0$ +\end_inset + +. + En particular, si +\begin_inset Formula $\alpha a+\beta b=d$ +\end_inset + + y +\begin_inset Formula $c=c'd$ +\end_inset + +, entonces +\begin_inset Formula $x_{0}=c'\alpha$ +\end_inset + + e +\begin_inset Formula $y_{0}=c'\beta$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $x,y\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $ax+by=c$ +\end_inset + +. + Entonces +\begin_inset Formula $d|ax+by=c$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Multiplicando la identidad de Bézout, +\begin_inset Formula $(c'\alpha)a+(c'\beta)b=c'd=c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $d=\text{mcd}(a,b)$ +\end_inset + +, +\begin_inset Formula $a=a'd$ +\end_inset + + y +\begin_inset Formula $b=b'd$ +\end_inset + +, las soluciones de +\begin_inset Formula $ax+by=0$ +\end_inset + + son +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x & = & -b't\\ +y & = & a't +\end{array}\right. +\] + +\end_inset + +para cualquier +\begin_inset Formula $t\in\mathbb{Z}$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $ax=-by$ +\end_inset + +, luego +\begin_inset Formula $a'x=-b'y$ +\end_inset + +. + Como +\begin_inset Formula $a'$ +\end_inset + + y +\begin_inset Formula $b'$ +\end_inset + + son coprimos y +\begin_inset Formula $a'|-b'y$ +\end_inset + +, entonces +\begin_inset Formula $a'|y$ +\end_inset + +, luego existe +\begin_inset Formula $t\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $y=a't$ +\end_inset + +, con lo que +\begin_inset Formula $a'x=-b'a't$ +\end_inset + + y +\begin_inset Formula $x=-b't$ +\end_inset + +. + Multiplicando, todos los enteros de esta forma son solución. +\end_layout + +\begin_layout Standard +Un entero +\begin_inset Formula $p\neq1,-1$ +\end_inset + + es +\series bold +primo +\series default + si sus únicos divisores son 1, +\begin_inset Formula $-1$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $-p$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +p\text{ es primo}\iff(p|ab\implies p|a\lor p|b)\iff(p|a_{1}\cdots a_{n}\implies\exists i:p|a_{i}) +\] + +\end_inset + + +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Si +\begin_inset Formula $p|a$ +\end_inset + + ya está. + Si no, +\begin_inset Formula $\text{mcd}(p,a)=1$ +\end_inset + + y +\begin_inset Formula $p|b$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Por inducción con +\begin_inset Formula $a_{1}\cdots a_{n}=a_{1}(a_{2}\cdots a_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Si +\begin_inset Formula $a|p$ +\end_inset + + entonces +\begin_inset Formula $p=ab$ +\end_inset + + para cierto +\begin_inset Formula $b$ +\end_inset + +, y bien +\begin_inset Formula $p|a$ +\end_inset + + (con lo que +\begin_inset Formula $a=p$ +\end_inset + + o +\begin_inset Formula $a=-p$ +\end_inset + +) o +\begin_inset Formula $p|b$ +\end_inset + + (con lo que +\begin_inset Formula $a=1$ +\end_inset + + o +\begin_inset Formula $a=-1$ +\end_inset + +). +\end_layout + +\begin_layout Standard + +\series bold +Teorema Fundamental de la Aritmética: +\series default + Todo entero distinto de +\begin_inset Formula $0$ +\end_inset + + y +\begin_inset Formula $\pm1$ +\end_inset + + puede escribirse como producto de primos, y la factorización es única salvo + signo y orden. + +\series bold +Demostración: +\series default + Consideremos el conjunto de todos los positivos distintos de 1 que no se + factorizan en primos y, si este no es vacío, sea +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + su mínimo. + +\begin_inset Formula $a$ +\end_inset + + no es primo, luego +\begin_inset Formula $a=bc$ +\end_inset + + con +\begin_inset Formula $b,c\in\mathbb{Z}^{+}\backslash\{1\}$ +\end_inset + +. + Pero como +\begin_inset Formula $a$ +\end_inset + + es mínimo, entonces +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + sí se factorizan en primos, luego +\begin_inset Formula $a$ +\end_inset + + también. +\begin_inset Formula $\#$ +\end_inset + + Ahora sea +\begin_inset Formula $a=p_{1}\cdots p_{n}=q_{1}\cdots q_{m}$ +\end_inset + + con +\begin_inset Formula $p_{1}\cdots p_{n},q_{1}\cdots q_{m}$ +\end_inset + + primos y supongamos +\begin_inset Formula $n\leq m$ +\end_inset + +. + Procedemos por inducción sobre +\begin_inset Formula $n$ +\end_inset + +. + Si +\begin_inset Formula $n=1$ +\end_inset + +, +\begin_inset Formula $a=p_{1}=q_{1}\cdots q_{m}$ +\end_inset + +, y como +\begin_inset Formula $p_{1}$ +\end_inset + + no tiene más divisores primos que +\begin_inset Formula $-p_{1}$ +\end_inset + + y +\begin_inset Formula $p_{1}$ +\end_inset + +, debe ser +\begin_inset Formula $m=1$ +\end_inset + + y +\begin_inset Formula $q_{1}=p_{1}$ +\end_inset + +. + Si suponemos el resultado válido para +\begin_inset Formula $n-1$ +\end_inset + +, entonces +\begin_inset Formula $p_{n}$ +\end_inset + + divide a +\begin_inset Formula $a=q_{1}\cdots q_{n}$ +\end_inset + + y por tanto divide a algún +\begin_inset Formula $i\in\{1,\dots,m\}$ +\end_inset + +. + Reordenamos los factores para obtener +\begin_inset Formula $i=m$ +\end_inset + +, es decir +\begin_inset Formula $p_{n}|q_{m}$ +\end_inset + +, con lo que +\begin_inset Formula $q_{m}=\pm p_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $p_{1}\cdots p_{n-1}p_{n}=q_{1}\cdots q_{m-1}(\pm p_{n})$ +\end_inset + +, con lo que +\begin_inset Formula $p_{1}\cdots p_{n-1}=\pm q_{1}\cdots q_{m-1}$ +\end_inset + + y +\begin_inset Formula $n-1=m-1$ +\end_inset + +, luego +\begin_inset Formula $n=m$ +\end_inset + + y además, después de ordenar si hiciera falta, +\begin_inset Formula $q_{i}=\pm p_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, para +\begin_inset Formula $a\in\mathbb{Z},a\neq0,\pm1$ +\end_inset + +, +\begin_inset Formula $a=\pm p_{1}^{n_{1}}\cdots p_{s}^{n_{s}}$ +\end_inset + + y estos primos y sus exponentes son únicos (salvo orden). + Entonces podemos calcular el +\begin_inset Formula $\text{mcd}(a,b)$ +\end_inset + + tomando el producto de primos comunes a +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + elevados a la mínima potencia y el +\begin_inset Formula $\text{mcm}(a,b)$ +\end_inset + + tomando el producto de primos entre ambos elevados a la máxima potencia. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, el conjunto de los números primos es infinito. + Si no lo fuera, y fuera +\begin_inset Formula $\{p_{1},\dots,p_{n}\}$ +\end_inset + +, el número +\begin_inset Formula $N:=p_{1}\cdots p_{n}+1$ +\end_inset + + también lo es. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Section +Congruencias +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $x,y\in\mathbb{Z},m\in\mathbb{Z}^{+}$ +\end_inset + +, +\begin_inset Formula $x$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + + son +\series bold +congruentes módulo +\begin_inset Formula $m$ +\end_inset + + +\series default +, +\begin_inset Formula $x\equiv y\mod m$ +\end_inset + + ó +\begin_inset Formula $x\equiv y\,(m)$ +\end_inset + +, si +\begin_inset Formula $m|x-y$ +\end_inset + +. + Esta relación es de equivalencia. + Propiedades: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $r$ +\end_inset + + es el resto de +\begin_inset Formula $a/m$ +\end_inset + + entonces +\begin_inset Formula $a\equiv r\,(m)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv b\,(m)\land0\leq a,b<m\implies a=b$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv b\,(m)$ +\end_inset + + si y sólo si +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + dan el mismo resto entre +\begin_inset Formula $m$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv a'\,(m)\land b\equiv b'\,(m)\implies a+b\equiv a'+b'\,(m)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $a-a'=\lambda m$ +\end_inset + + y +\begin_inset Formula $b-b'=\mu m$ +\end_inset + + para ciertos +\begin_inset Formula $\lambda,\mu\in\mathbb{Z}$ +\end_inset + +, luego +\begin_inset Formula $(a+b)-(a'+b')=(\lambda+\mu)m$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv a'\,(m)\land b\equiv b'\,(m)\implies ab\equiv a'b'\,(m)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +ab-a'b'=(a'+\lambda m)(b'+\mu m)-a'b'=a'b'+(a'\mu+b'\lambda+\lambda\mu m)m-a'b'\equiv0\,(m) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\equiv b\,(m)\implies ac\equiv bc\,(m)$ +\end_inset + +. + El recíproco es cierto si +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + son coprimos. +\begin_inset Newline newline +\end_inset + +La primera parte se sigue de lo anterior. + Para la segunda, +\begin_inset Formula $m|ac-bc=(a-b)c\implies m|a-b\implies a\equiv b\,(m)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c\neq0\implies(a\equiv b\,(m)\iff ac\equiv bc\,(mc))$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $a-b=\lambda m\iff ac-bc=\lambda mc$ +\end_inset + + +\end_layout + +\begin_layout Standard +Denotamos la clase de equivalencia (llamada +\series bold +clase de congruencia módulo +\begin_inset Formula $m$ +\end_inset + + +\series default +) de +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + por +\begin_inset Formula $\overline{a}$ +\end_inset + +, y su +\series bold +representante canónico +\series default + es el resto de +\begin_inset Formula $a/m$ +\end_inset + +. + Llamamos entonces +\begin_inset Formula $\mathbb{Z}/(m)$ +\end_inset + + o +\begin_inset Formula $\mathbb{Z}_{m}$ +\end_inset + + al conjunto cociente, que tiene exactamente +\begin_inset Formula $m$ +\end_inset + + elementos. + Así, para +\begin_inset Formula $\overline{a},\overline{b}\in\mathbb{Z}_{m}$ +\end_inset + +, definimos +\begin_inset Formula $\overline{a}+\overline{b}=\overline{a+b}$ +\end_inset + + y +\begin_inset Formula $\overline{a}\cdot\overline{b}=\overline{a\cdot b}$ +\end_inset + +, y vemos que están bien definidas y que +\begin_inset Formula $\mathbb{Z}_{m}$ +\end_inset + + es un anillo conmutativo. + Dado +\begin_inset Formula $\overline{a}\in\mathbb{Z}_{m}$ +\end_inset + +: +\begin_inset Formula +\begin{multline*} +\overline{a}\text{ tiene inverso (}\exists\overline{b}\in\mathbb{Z}_{m}:\overline{a}\cdot\overline{b}=1\text{)}\iff\overline{a}\text{ es cancelable (}\overline{a}\cdot\overline{x}=\overline{a}\cdot\overline{y}\implies\overline{x}=\overline{y}\text{)}\iff\\ +\iff\text{mcd}(a,m)=1 +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\implies2]$ +\end_inset + + Multiplicando por +\begin_inset Formula $\overline{a}^{-1}$ +\end_inset + + en ambos lados de +\begin_inset Formula $\overline{a}\cdot\overline{x}=\overline{a}\cdot\overline{y}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $2\implies3]$ +\end_inset + + Si +\begin_inset Formula $\text{mcd}(a,m)=d>1$ +\end_inset + +, sean +\begin_inset Formula $a=a'd$ +\end_inset + + y +\begin_inset Formula $m=m'd$ +\end_inset + +, entonces +\begin_inset Formula $\overline{a}\cdot\overline{m'}=\overline{a'}\cdot\overline{d}\cdot\overline{m'}=\overline{a'}\cdot\overline{m}=\overline{0}=\overline{a}\cdot\overline{0}$ +\end_inset + +, pero +\begin_inset Formula $\overline{m'}\neq\overline{0}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $3\implies1]$ +\end_inset + + Existen +\begin_inset Formula $r,s\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $ra+sm=1$ +\end_inset + +, luego +\begin_inset Formula $\overline{r}\cdot\overline{a}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $\mathbb{Z}_{m}$ +\end_inset + + es un cuerpo si y sólo si +\begin_inset Formula $m$ +\end_inset + + es primo, pues entonces todos los elementos tienen inverso. +\end_layout + +\begin_layout Standard +Un entero es divisible por 3 si y sólo si la suma de sus cifras lo es. + +\series bold +Demostración: +\series default + +\begin_inset Formula $3|m\iff m\equiv0\,(3)$ +\end_inset + +. + +\begin_inset Formula $10\equiv1\,(3)$ +\end_inset + +, luego +\begin_inset Formula $10^{s}\equiv1\,(3)$ +\end_inset + + para todo +\begin_inset Formula $s$ +\end_inset + + y si +\begin_inset Formula $m$ +\end_inset + + se escribe como +\begin_inset Formula $a_{n}\cdots a_{0}$ +\end_inset + +, entonces +\begin_inset Formula $m=a_{n}10^{n}+\dots+a_{0}\equiv a_{n}+\dots+a_{0}\,(3)$ +\end_inset + +. + De forma parecida se pueden sacar reglas para el 9 y el 11. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a,b,t\in\mathbb{Z}$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\overline{t}\text{ es sol. de }\overline{a}x=\overline{b}\in\mathbb{Z}_{m}\iff t\text{ es sol. de }ax\equiv b\,(m)\iff\exists s\in\mathbb{Z}:(t,s)\text{ es sol. de }ax-my=b +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +La ecuación +\begin_inset Formula $ax\equiv b\,(m)$ +\end_inset + + tiene solución si y sólo si +\begin_inset Formula $d:=\text{mcd}(a,m)|b$ +\end_inset + +, y las soluciones son todos los enteros +\begin_inset Formula $x=x_{0}+\lambda\frac{m}{d}$ +\end_inset + + con +\begin_inset Formula $\lambda\in\mathbb{Z}$ +\end_inset + +, donde +\begin_inset Formula $x_{0}$ +\end_inset + + es una solución particular, de modo que la ecuación tiene +\begin_inset Formula $d$ +\end_inset + + soluciones distintas módulo +\begin_inset Formula $m$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $ax\equiv b$ +\end_inset + + equivale a la ecuación diofántica +\begin_inset Formula $ax-my=b$ +\end_inset + +, que tiene solución si y sólo si +\begin_inset Formula $d|b$ +\end_inset + +. + Sean pues +\begin_inset Formula $b=db'$ +\end_inset + +, +\begin_inset Formula $a=da'$ +\end_inset + + y +\begin_inset Formula $m=dm'$ +\end_inset + +, entonces +\begin_inset Formula $ax-my=b$ +\end_inset + + equivale a +\begin_inset Formula $a'x-m'y=b'$ +\end_inset + + y las soluciones son +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x & = & x_{0}+m'\lambda\\ +y & = & y_{0}+a'\lambda +\end{array}\right. +\] + +\end_inset + +Entonces +\begin_inset Formula $x_{0}+\lambda m'\equiv x_{0}+\mu m'\,(m)\iff\lambda m'\equiv\mu m'\,(dm')\iff\lambda\equiv\mu\,(d)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Teorema Chino de los Restos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $b_{1},\dots,b_{k}\in\mathbb{Z}$ +\end_inset + + arbitrarios y +\begin_inset Formula $m_{1},\dots,m_{k}\in\mathbb{Z}^{+}$ +\end_inset + + coprimos dos a dos, el sistema de congruencias +\begin_inset Formula +\[ +\left\{ \begin{array}{cc} +x\equiv b_{1} & (m_{1})\\ +\vdots\\ +x\equiv b_{k} & (m_{k}) +\end{array}\right. +\] + +\end_inset + +tiene solución única módulo +\begin_inset Formula $M:=m_{1}\cdots m_{k}$ +\end_inset + +. + En particular, esta es +\begin_inset Formula $b_{1}M_{1}N_{1}+\dots+b_{k}M_{k}N_{k}$ +\end_inset + +, donde +\begin_inset Formula $M_{i}=\frac{M}{M_{i}}$ +\end_inset + + y +\begin_inset Formula $N_{i}$ +\end_inset + + es tal que +\begin_inset Formula $M_{i}N_{i}\equiv1\,(m_{i})$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $p$ +\end_inset + + es un número primo que divide a +\begin_inset Formula $M_{i}$ +\end_inset + + y +\begin_inset Formula $m_{i}$ +\end_inset + +, entonces divide a algún +\begin_inset Formula $m_{j}$ +\end_inset + + con +\begin_inset Formula $j\neq i$ +\end_inset + +, lo cual contradice que +\begin_inset Formula $\text{mcd}(m_{i},m_{j})=1$ +\end_inset + +, luego +\begin_inset Formula $M_{i}$ +\end_inset + + y +\begin_inset Formula $m_{i}$ +\end_inset + + son coprimos y +\begin_inset Formula $M_{i}$ +\end_inset + + tiene inverso +\begin_inset Formula $N_{i}$ +\end_inset + + módulo +\begin_inset Formula $m_{i}$ +\end_inset + +, teniendo en cuenta que +\begin_inset Formula $M_{i}N_{i}\equiv0\,(m_{j})$ +\end_inset + + para +\begin_inset Formula $j\neq i$ +\end_inset + +. + Entonces +\begin_inset Formula $x_{0}=b_{1}M_{1}N_{1}+\dots+b_{k}M_{k}N_{k}$ +\end_inset + + es solución del sistema. + Ahora bien, si +\begin_inset Formula $x$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + + son soluciones del sistema, +\begin_inset Formula $x,y\equiv b_{i}\,(m_{i})$ +\end_inset + +, luego +\begin_inset Formula $x\equiv y\,(m_{i})$ +\end_inset + +, con lo que +\begin_inset Formula $x-y$ +\end_inset + + es múltiplo de todos los +\begin_inset Formula $m_{i}$ +\end_inset + + y por tanto +\begin_inset Formula $x\equiv y\,(M)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si los módulos no son coprimos, intentamos simplificar cada ecuación dividiéndol +a entre un número, pues +\begin_inset Formula $a'dx\equiv b'd\,(m'd)\iff a'x\equiv b'\,(m')$ +\end_inset + +. + Si esto no es posible, resolvemos una ecuación y sustituimos en el resto. +\end_layout + +\begin_layout Section +Teoremas de Euler y Fermat +\end_layout + +\begin_layout Standard +Denotamos +\begin_inset Formula $\mathbb{Z}_{m}^{*}=\{x\in\mathbb{Z}_{m}|x\text{ es invertible}\}$ +\end_inset + +, y definimos la +\series bold +función +\begin_inset Formula $\phi$ +\end_inset + + de Euler +\series default + como +\begin_inset Formula $\phi:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\phi(m)=|\{x\in\mathbb{N}|1\leq x\leq m\land\text{mcd}(x,m)=1\}|=|\mathbb{Z}_{m}^{*}|$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p)=p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Los no-coprimos con +\begin_inset Formula $p^{n}$ +\end_inset + + son precisamente los múltiplos de +\begin_inset Formula $p$ +\end_inset + +, por lo que estos son +\begin_inset Formula $\frac{p^{n}}{p}=p^{n-1}$ +\end_inset + + y +\begin_inset Formula $\phi(p^{n})=p^{n}-p^{n-1}=p^{n}(p-1)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{mcd}(n,m)=1$ +\end_inset + +, entonces +\begin_inset Formula $\phi(nm)=\phi(n)\phi(m)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Definimos +\begin_inset Formula $f:\mathbb{Z}_{nm}^{*}\rightarrow\mathbb{Z}_{n}^{*}\times\mathbb{Z}_{m}^{*}$ +\end_inset + + tal que +\begin_inset Formula $f(x)=(x_{n},x_{m})$ +\end_inset + +, donde +\begin_inset Formula $x_{n}$ +\end_inset + + y +\begin_inset Formula $x_{m}$ +\end_inset + + son los restos de dividir +\begin_inset Formula $x$ +\end_inset + + entre +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + +, respectivamente. + Para abreviar asumimos que está bien definida, y pasamos a ver que es biyectiva. + Si +\begin_inset Formula $f(x)=(x_{n},x_{m})=f(y)$ +\end_inset + + entonces +\begin_inset Formula $x\equiv y\,(m)$ +\end_inset + + y +\begin_inset Formula $x\equiv y\,(n)$ +\end_inset + +, luego +\begin_inset Formula $nm|(x-y)$ +\end_inset + + y en +\begin_inset Formula $\mathbb{Z}_{nm}^{*}$ +\end_inset + + es inyectiva. + Para ver que es suprayectiva, consideramos +\begin_inset Formula $(a,b)\in\mathbb{Z}_{n}^{*}\times\mathbb{Z}_{m}^{*}$ +\end_inset + +. + Al existir una identidad de Bézout +\begin_inset Formula $1=rn+sm$ +\end_inset + +, podemos hacer +\begin_inset Formula $x=brn+asm$ +\end_inset + +, con lo que +\begin_inset Formula $x\equiv a\,(n)$ +\end_inset + + y +\begin_inset Formula $x\equiv b\,(m)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $m=p_{1}^{n_{1}}\cdots p_{s}^{n_{s}}$ +\end_inset + + es la descomposición de +\begin_inset Formula $m$ +\end_inset + + en factores primos, entonces +\begin_inset Formula +\[ +\phi(m)=\prod_{i=1}^{s}p_{i}^{n_{i}-1}(p_{i}-1)=m\left(1-\frac{1}{p_{1}}\right)\cdots\left(1-\frac{1}{p_{s}}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Euler: +\series default + Sea +\begin_inset Formula $1<m\in\mathbb{Z}$ +\end_inset + +. + Si +\begin_inset Formula $a$ +\end_inset + + es coprimo con +\begin_inset Formula $m$ +\end_inset + + entonces +\begin_inset Formula $a^{\phi(m)}\equiv1\,(m)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Esto equivale a que +\begin_inset Formula $\overline{a}^{\phi(m)}=\overline{1}\in\mathbb{Z}_{m}$ +\end_inset + +. + Sea +\begin_inset Formula $\mathbb{Z}_{m}^{*}=\{\overline{x_{1}},\dots,\overline{x_{\phi(m)}}\}$ +\end_inset + + y +\begin_inset Formula $\overline{a}\cdot\mathbb{Z}_{m}^{*}=\{\overline{a}\overline{x}|\overline{x}\in\mathbb{Z}_{m}^{*}\}$ +\end_inset + +. + Demostramos que +\begin_inset Formula $\overline{a}\cdot\mathbb{Z}_{m}^{*}=\mathbb{Z}_{m}^{*}$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $x=\overline{ax_{i}}\in\overline{a}\cdot\mathbb{Z}_{m}^{*}\implies x\overline{a}^{-1}\overline{x_{i}}^{-1}=\overline{1}\implies x\in\mathbb{Z}_{m}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\overline{x_{i}}\in\mathbb{Z}_{m}^{*}\implies\overline{x_{i}}=\overline{a}\,\overline{a}^{-1}\overline{x_{i}}\in\overline{a}\cdot\mathbb{Z}_{m}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Entonces +\begin_inset Formula $\prod_{i=1}^{\phi(m)}\overline{x}_{i}=\prod_{i=1}^{\phi(m)}\overline{ax_{i}}=\overline{a}^{\phi(m)}\prod_{i=1}^{\phi(m)}\overline{x_{i}}$ +\end_inset + +, y dividiendo entre +\begin_inset Formula $\prod_{i=1}^{\phi(m)}\overline{x_{i}}$ +\end_inset + +, porque es invertible, se obtiene el resultado. +\end_layout + +\begin_layout Standard + +\series bold +Teorema Pequeño de Fermat: +\series default + Si +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + es un número primo que no divide a +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula $a^{p-1}\equiv1\,(p)$ +\end_inset + +, y para todo +\begin_inset Formula $x\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $x^{p}\equiv x\,(p)$ +\end_inset + +. + Esto se deriva del teorema de Euler y de que +\begin_inset Formula $\phi(p)=p-1$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
