diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /cyn/n8.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'cyn/n8.lyx')
| -rw-r--r-- | cyn/n8.lyx | 954 |
1 files changed, 954 insertions, 0 deletions
diff --git a/cyn/n8.lyx b/cyn/n8.lyx new file mode 100644 index 0000000..1249714 --- /dev/null +++ b/cyn/n8.lyx @@ -0,0 +1,954 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Polinomios con coeficientes en un cuerpo +\end_layout + +\begin_layout Standard +Un +\series bold +polinomio +\series default + con coeficientes en el cuerpo +\begin_inset Formula $K$ +\end_inset + + es una expresión de la forma +\begin_inset Formula +\[ +a_{0}+a_{1}X+a_{2}X^{2}+\dots+a_{n}X^{n}=\sum_{i=0}^{n}a_{i}X_{i} +\] + +\end_inset + +con +\begin_inset Formula $a_{0},\dots,a_{n}\in K$ +\end_inset + +. + El símbolo +\begin_inset Formula $X$ +\end_inset + + se llama +\series bold +indeterminada +\series default + y llamamos +\series bold +coeficiente +\series default + de grado +\begin_inset Formula $i$ +\end_inset + + a +\begin_inset Formula $a_{i}$ +\end_inset + +, +\series bold +término independiente +\series default + a +\begin_inset Formula $a_{0}$ +\end_inset + + y +\series bold +coeficiente principal +\series default + o +\series bold +líder +\series default + a +\begin_inset Formula $a_{n}$ +\end_inset + + si es +\begin_inset Formula $a_{n}\neq0$ +\end_inset + +. + Un polinomio es +\series bold +mónico +\series default + si +\begin_inset Formula $a_{n}=1$ +\end_inset + +. + Los polinomios de forma +\begin_inset Formula $a_{0}$ +\end_inset + + se llaman +\series bold +constantes +\series default + y los identificamos con los elementos de +\begin_inset Formula $K$ +\end_inset + +. + El conjunto de todos los polinomios con coeficientes en +\begin_inset Formula $K$ +\end_inset + + se denota +\begin_inset Formula $K[X]$ +\end_inset + +, y dos polinomios +\begin_inset Formula $P=a_{0}+\dots+a_{n}X^{n},Q=b_{0}+\dots+b_{m}X^{m}\in K[X]$ +\end_inset + + con +\begin_inset Formula $n\leq m$ +\end_inset + + son iguales si +\begin_inset Formula $a_{i}=b_{i}$ +\end_inset + + para +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + + y +\begin_inset Formula $b_{j}=0$ +\end_inset + + para +\begin_inset Formula $j\in\{n+1,\dots,m\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $P+Q=(a_{0}+b_{0})+(a_{1}+b_{1})X+\dots+(a_{n}+b_{n})X^{n}$ +\end_inset + +, y +\begin_inset Formula $PQ=c_{0}+c_{1}X+\dots+c_{n+m}X^{n+m}$ +\end_inset + + si +\begin_inset Formula $c_{k}=\sum_{i+j=k}a_{i}b_{j}=a_{0}b_{k}+a_{1}b_{k-1}+\dots+a_{k}b_{0}$ +\end_inset + +. + Así, +\begin_inset Formula $K[X]$ +\end_inset + + es un anillo conmutativo. +\end_layout + +\begin_layout Standard +\begin_inset Formula $P$ +\end_inset + + tiene +\series bold +grado +\series default + +\begin_inset Formula $n$ +\end_inset + + si +\begin_inset Formula $P=\sum_{i=0}^{n}a_{i}X^{i}$ +\end_inset + + con +\begin_inset Formula $a_{n}\neq0$ +\end_inset + +, y se denota con +\begin_inset Formula $\text{gr}(P)$ +\end_inset + +. + Por convención, si +\begin_inset Formula $P(X)=0$ +\end_inset + +, +\begin_inset Formula $\text{gr}(P)=-\infty$ +\end_inset + +. + Si tomamos el convenio de que +\begin_inset Formula $-\infty+n=-\infty$ +\end_inset + +, +\begin_inset Formula $(-\infty)+(-\infty)=-\infty$ +\end_inset + + y +\begin_inset Formula $-\infty<n$ +\end_inset + +, se tiene que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(PQ)=\text{gr}(P)+\text{gr}(Q)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(P+Q)\leq\max\{\text{gr}(P),\text{gr}(Q)\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $PQ=0\implies P=0\lor Q=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists P^{-1}:P^{-1}P=1\iff\text{gr}(P)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Se define el +\series bold +valor de +\begin_inset Formula $P(x)$ +\end_inset + + en +\begin_inset Formula $b$ +\end_inset + + +\series default + como +\begin_inset Formula $P(b)=a_{0}+a_{1}b+\dots+a_{n}b^{n}\in K$ +\end_inset + +, con lo que +\begin_inset Formula $P$ +\end_inset + + define una aplicación +\begin_inset Formula $P:K\rightarrow K$ +\end_inset + + que llamamos +\series bold +función polinomial asociada a +\begin_inset Formula $K$ +\end_inset + + +\series default +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la división: +\series default + Para +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + existen dos únicos polinomios, +\begin_inset Formula $Q$ +\end_inset + + ( +\series bold +cociente +\series default +) y +\begin_inset Formula $R$ +\end_inset + + ( +\series bold +resto +\series default +) en +\begin_inset Formula $K[X]$ +\end_inset + + tales que +\begin_inset Formula $A=BQ+R$ +\end_inset + + y +\begin_inset Formula $\text{gr}(R)<\text{gr}(B)$ +\end_inset + +. + +\series bold +Teorema del resto: +\series default + El resto de la división de +\begin_inset Formula $P/X-a$ +\end_inset + + es +\begin_inset Formula $P(a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula $A$ +\end_inset + + divide a +\begin_inset Formula $B$ +\end_inset + +, o que +\begin_inset Formula $B$ +\end_inset + + es múltiplo de +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $A|B$ +\end_inset + +) si +\begin_inset Formula $\exists C:B=AC$ +\end_inset + +. + Si +\begin_inset Formula $A|B\neq0$ +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + es un +\series bold +divisor +\series default + de +\begin_inset Formula $B$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A|B\land A|C\implies A|PB+QC$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A|B\land B|C\implies A|C$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Los polinomios de la forma +\begin_inset Formula $\lambda A$ +\end_inset + + para +\begin_inset Formula $0\neq\lambda\in K$ +\end_inset + + se llaman +\series bold +polinomios asociados +\series default + de +\begin_inset Formula $A$ +\end_inset + +. + Cada polinomio tiene un único polinomio asociado mónico. +\end_layout + +\begin_layout Standard +\begin_inset Formula $D$ +\end_inset + + es el máximo común divisor de +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + si +\begin_inset Formula $D|A,B$ +\end_inset + +, +\begin_inset Formula $S|A,B\implies S|D$ +\end_inset + + y +\begin_inset Formula $D$ +\end_inset + + es mónico. + Si +\begin_inset Formula $D'$ +\end_inset + + verifica las dos primeras condiciones, entonces es asociado a +\begin_inset Formula $D$ +\end_inset + +. + Además, si +\begin_inset Formula $A,B\neq0$ +\end_inset + +, entonces +\begin_inset Formula $D$ +\end_inset + + es el único polinomio mónico de grado mínimo que es combinación lineal + de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + son coprimos o primos entre sí si +\begin_inset Formula $\text{mcd}(A,B)=1$ +\end_inset + +, es decir, si existen +\begin_inset Formula $S,T\in K[X]$ +\end_inset + + tales que +\begin_inset Formula $SA+TB=1$ +\end_inset + +. + En tal caso, +\begin_inset Formula $A|BC\implies A|C$ +\end_inset + +. + Además, si +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + con alguno de los dos no nulo y +\begin_inset Formula $D=\text{mcd}(A,B)$ +\end_inset + +, entonces +\begin_inset Formula $\frac{A}{D}$ +\end_inset + + y +\begin_inset Formula $\frac{B}{D}$ +\end_inset + + son coprimos. +\end_layout + +\begin_layout Standard +\begin_inset Formula $M$ +\end_inset + + es el mínimo común múltiplo de +\begin_inset Formula $A,B\in K[X]$ +\end_inset + + si +\begin_inset Formula $A,B|M$ +\end_inset + +, +\begin_inset Formula $A,B|N\implies M|N$ +\end_inset + + y +\begin_inset Formula $M$ +\end_inset + + es mónico. + Si +\begin_inset Formula $M'$ +\end_inset + + cumple las dos primeras condiciones, entonces es asociado a +\begin_inset Formula $M$ +\end_inset + +. + Además, existe +\begin_inset Formula $\mu\in K$ +\end_inset + + tal que +\begin_inset Formula $\text{mcm}(A,B)=\mu\frac{AB}{\text{mcd}(A,B)}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Raíces de polinomios +\end_layout + +\begin_layout Standard +\begin_inset Formula $r\in K$ +\end_inset + + es una +\series bold +raíz +\series default + de +\begin_inset Formula $P\in K[X]$ +\end_inset + + si +\begin_inset Formula $P(r)=0$ +\end_inset + +. + Si +\begin_inset Formula $\frac{p}{q}$ +\end_inset + +, con +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + coprimos, es raíz de +\begin_inset Formula $P$ +\end_inset + +, entonces +\begin_inset Formula $p|a_{0}$ +\end_inset + + y +\begin_inset Formula $q|a_{n}$ +\end_inset + +. + La +\series bold +regla de Ruffini +\series default + se basa en que +\begin_inset Formula $a$ +\end_inset + + es raíz de +\begin_inset Formula $P$ +\end_inset + + si y sólo si +\begin_inset Formula $X-a|P$ +\end_inset + +. + Así, decimos que +\begin_inset Formula $a$ +\end_inset + + es una raíz de +\series bold +multiplicidad +\begin_inset Formula $s\geq1$ +\end_inset + + +\series default + de +\begin_inset Formula $P$ +\end_inset + + si +\begin_inset Formula $(X-a)^{s}|P$ +\end_inset + + pero no +\begin_inset Formula $(X-a)^{s+1}|P$ +\end_inset + +. + Una raíz es +\series bold +múltiple +\series default + si tiene multiplicidad mayor que 1, de lo contrario es una raíz +\series bold +simple +\series default +. + Si +\begin_inset Formula $\text{gr}(P)=n\neq-\infty$ +\end_inset + +, entonces +\begin_inset Formula $P$ +\end_inset + + tiene a lo sumo +\begin_inset Formula $n$ +\end_inset + + raíces en +\begin_inset Formula $K$ +\end_inset + +, contando cada raíz tantas veces como su multiplicidad. + Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(P)=n$ +\end_inset + + y existen +\begin_inset Formula $m>n$ +\end_inset + + raíces de +\begin_inset Formula $P$ +\end_inset + + en +\begin_inset Formula $K$ +\end_inset + +, entonces +\begin_inset Formula $P=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(P)=n\geq0$ +\end_inset + + y existen +\begin_inset Formula $a_{1},\dots,a_{m}\in K$ +\end_inset + + tales que +\begin_inset Formula $P(a_{i})=Q(a_{i})$ +\end_inset + + con +\begin_inset Formula $m>n$ +\end_inset + +, entonces +\begin_inset Formula $P=Q$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es un cuerpo infinito y +\begin_inset Formula $P,Q\in K[X]$ +\end_inset + + son distintos, entonces las funciones +\begin_inset Formula $P,Q:K\rightarrow K$ +\end_inset + + son distintas. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $P=a_{0}+\dots+a_{n}X^{n}\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)=n$ +\end_inset + + y raíces +\begin_inset Formula $r_{1},\dots,r_{n}$ +\end_inset + + (no necesariamente distintas), entonces +\begin_inset Formula $P=a_{n}(X-r_{1})\cdots(X-r_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Factorización y raíces de polinomios +\end_layout + +\begin_layout Standard +\begin_inset Formula $P\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)>0$ +\end_inset + + es +\series bold +irreducible +\series default + o +\series bold +primo +\series default + si +\begin_inset Formula $Q|P\implies\text{gr}(Q)=0\lor\exists k\in K:Q=kP$ +\end_inset + +. + Así: +\begin_inset Formula +\[ +P\text{ es irreducible}\iff(P|QR\implies P|Q\lor P|R)\iff(P|Q_{1}\cdots Q_{n}\implies\exists i:P|Q_{i}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Todo +\begin_inset Formula $P\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)\geq1$ +\end_inset + + factoriza como producto de polinomios irreducibles, y esta factorización + es única salvo asociados y orden. +\end_layout + +\begin_layout Section +Polinomios irreducibles en +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + y +\begin_inset Formula $\mathbb{C}[X]$ +\end_inset + +. + Teorema Fundamental del Álgebra +\end_layout + +\begin_layout Standard +El +\series bold +Teorema Fundamental del Álgebra +\series default + afirma que todo +\begin_inset Formula $P\in\mathbb{C}[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(P)>0$ +\end_inset + + tiene al menos una raíz en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P\in\mathbb{C}[X]$ +\end_inset + + es irreducible si y sólo si +\begin_inset Formula $\text{gr}(P)=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall P\in\mathbb{C}[X],\text{gr}(P)=n\geq1,\exists r,r_{1},\dots,r_{n}\in\mathbb{C}:P=r(X-r_{1})\cdots(X-r_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $z\in\mathbb{C}$ +\end_inset + + es raíz de +\begin_inset Formula $P\in\mathbb{R}[X]$ +\end_inset + +, entonces +\begin_inset Formula $\overline{z}$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P\in\mathbb{R}[X]$ +\end_inset + + es irreducible, entonces, o +\begin_inset Formula $\text{gr}(P)=1$ +\end_inset + +, o +\begin_inset Formula $\text{gr}(P)=2$ +\end_inset + + y no tiene raíces reales. +\end_layout + +\end_body +\end_document |
