diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /fuvr1/n1.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'fuvr1/n1.lyx')
| -rw-r--r-- | fuvr1/n1.lyx | 2278 |
1 files changed, 2278 insertions, 0 deletions
diff --git a/fuvr1/n1.lyx b/fuvr1/n1.lyx new file mode 100644 index 0000000..c26556f --- /dev/null +++ b/fuvr1/n1.lyx @@ -0,0 +1,2278 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures false +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Definición axiomática de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es el cuerpo conmutativo totalmente ordenado y completo. +\end_layout + +\begin_layout Subsection +Cuerpo conmutativo +\end_layout + +\begin_layout Standard +Conjunto con dos operaciones internas: suma ( +\begin_inset Formula $\mathbb{K}\times\mathbb{K}\rightarrow\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $(x,y)\mapsto x+y$ +\end_inset + +) y producto ( +\begin_inset Formula $\mathbb{K}\times\mathbb{K}\rightarrow\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $(x,y)\mapsto x\cdot y$ +\end_inset + +), con las siguientes propiedades: +\begin_inset Formula $\forall a,b,c\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Asociativa de la suma: +\series default + +\begin_inset Formula $a+(b+c)=(a+b)+c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Conmutativa de la suma: +\begin_inset Formula $a+b=b+a$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Elemento neutro para la suma +\series default + o +\series bold +nulo: +\series default + +\begin_inset Formula $\exists!0\in\mathbb{K}:\forall a\in\mathbb{K},0+a=a$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro +\begin_inset Formula $0$ +\end_inset + + ( +\begin_inset Formula $0'$ +\end_inset + +), entonces +\begin_inset Formula $0=0+0'=0'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Inverso para la suma +\series default + u +\series bold +opuesto: +\series default + +\begin_inset Formula $\exists!a':a+a'=0$ +\end_inset + +. + +\begin_inset Formula $a':=-a$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro opuesto +\begin_inset Formula $a''$ +\end_inset + +, entonces +\begin_inset Formula $a'=0+a'=(a''+a)+a'=a''+(a+a')=a''+0=a''$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Asociativa del producto: +\series default + +\begin_inset Formula $a\cdot(b\cdot c)=(a\cdot b)\cdot c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Conmutativa del producto: +\series default + +\begin_inset Formula $a\cdot b=b\cdot a$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Elemento neutro para el producto +\series default + o +\series bold +unidad: +\series default + +\begin_inset Formula $\exists!1\in\mathbb{K}:\forall a\in K,1\cdot a=a$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro +\begin_inset Formula $1$ +\end_inset + + ( +\begin_inset Formula $1'$ +\end_inset + +), entonces +\begin_inset Formula $1=1\cdot1'=1'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Inverso para el producto: +\series default + +\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a'':a\cdot a''=1$ +\end_inset + +; +\begin_inset Formula $a'':=\frac{1}{a}:=a^{-1}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Pongamos que existe otro +\begin_inset Formula $a''$ +\end_inset + + ( +\begin_inset Formula $a'$ +\end_inset + +), entonces +\begin_inset Formula $a''=1\cdot a''=(a'\cdot a)\cdot a''=a'\cdot(a\cdot a'')=a'\cdot1=a'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Distributiva: +\series default + +\begin_inset Formula $a\cdot(b+c)=a\cdot b+a\cdot c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí podemos deducir que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a=b\iff a-b=0$ +\end_inset + +; +\begin_inset Formula $b\neq0\implies(a=b\iff a\cdot b^{-1}=1)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a=b\iff a+(-b)=b+(-b)\iff a-b=0 +\] + +\end_inset + + +\begin_inset Formula +\[ +b\neq0\implies\exists b^{-1}\implies(a=b\iff a\cdot b^{-1}=b\cdot b^{-1}=1) +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\cdot0=0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\cdot0+0=a\cdot0=a\cdot(0+0)=a\cdot0+a\cdot0\implies-a\cdot0+a\cdot0=-a\cdot0+a\cdot0+a\cdot0\implies0=a\cdot0 +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(-a)\cdot b=-(ab)$ +\end_inset + +; +\begin_inset Formula $(-1)\cdot a=-a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +(-a)\cdot b+a\cdot b=(-a+a)\cdot b=0\cdot b=0 +\] + +\end_inset + + +\begin_inset Formula +\[ +(-1)\cdot a=-(1\cdot a)=-a +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Totalmente ordenado +\end_layout + +\begin_layout Standard +Aquel con relación binaria +\begin_inset Formula $\leq$ +\end_inset + + con las siguientes propiedades: +\begin_inset Formula $\forall x,y,z\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Reflexiva: +\series default + +\begin_inset Formula $x\leq x$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Antisimétrica: +\series default + +\begin_inset Formula $x\leq y\land y\leq x\iff x=y$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Transitiva: +\series default + +\begin_inset Formula $x\leq y\land y\leq z\implies x\leq z$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Orden total: +\series default + +\begin_inset Formula $x\leq y\lor y\leq x$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $x\leq y\implies x+z\leq y+z$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $x\leq y\land0\leq z\implies x\cdot z\leq y\cdot z$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una relación binaria que cumple las propiedades 1–3 se denomina de +\series bold +orden. + +\series default + Si también cumple (4), de +\series bold +orden total. + +\series default + El conjunto de todas definen un +\series bold +cuerpo totalmente ordenado. +\end_layout + +\begin_layout Standard +Notación: +\begin_inset Formula $x<y\iff y>x\iff x\leq y\land x\neq y$ +\end_inset + +; +\begin_inset Formula $x\geq y\iff y\leq x$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos deducir que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c<0\iff-c>0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +c<0\iff c+(-c)<-c\iff0<-c +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\leq b\land c\leq d\implies a+c\leq b+d$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\begin{array}{c} +a\leq b\implies a+c\leq b+c\\ +c\leq d\implies b+c\leq b+d +\end{array}\implies a+c\leq b+d +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\leq b\iff-a\geq-b$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\leq b\iff a+(-a)+(-b)\leq b+(-b)+(-a)\iff-b\leq-a +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c<0\implies(a\leq b\iff ca\geq cb)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +c<0\implies-c>0\implies(-c)a\leq(-c)b\implies-(ca)\leq-(cb)\implies ca\geq cb +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\neq0\implies a\cdot a>0$ +\end_inset + +; +\begin_inset Formula $1\neq0\implies1\geq0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\cdot a\neq0;\ \begin{cases} +a\geq0 & \implies a\cdot a\geq a\cdot0=0\\ +a\leq0 & \implies a\cdot a\geq a\cdot0=0 +\end{cases}\implies a\cdot a>0 +\] + +\end_inset + + +\begin_inset Formula +\[ +0\neq1\land1=1\cdot1\implies1>0 +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a>0\iff a^{-1}>0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Supongamos +\begin_inset Formula $a^{-1}\leq0$ +\end_inset + + y +\begin_inset Formula $a>0$ +\end_inset + +. + Entonces, +\begin_inset Formula $1=a\cdot a^{-1}\leq0$ +\end_inset + +. + Pero +\begin_inset Formula $1\nleq0\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b>0\implies(a\leq b\implies a^{-1}\leq b^{-1})$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a\geq b\implies a^{-1}\cdot a\geq b\cdot a^{-1}\implies1\geq b\cdot a^{-1}\implies b^{-1}\geq b^{-1}(b\cdot a^{-1})=a^{-1}\implies b^{-1}\geq a^{-1} +\] + +\end_inset + +El recíproco es cierto si +\begin_inset Formula $a>0$ +\end_inset + + también, pues en el último paso multiplicaríamos por +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Completo +\end_layout + +\begin_layout Standard +Aquel que cumple el +\series bold +axioma del supremo: +\series default + todo subconjunto no vacío de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + acotado superiormente tiene supremo. + Un conjunto +\begin_inset Formula $\emptyset\neq A\subseteq\mathbb{R}$ +\end_inset + + está acotado superiormente si +\begin_inset Formula $\exists M\in\mathbb{R}:\forall a\in A,a\leq M$ +\end_inset + +, entonces +\begin_inset Formula $M$ +\end_inset + + es cota superior de +\begin_inset Formula $A$ +\end_inset + +. + +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + es el supremo de +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $\alpha=\sup A$ +\end_inset + +) si es su menor cota superior, y cumple que +\begin_inset Formula $\forall\varepsilon>0,\exists a\in A:\alpha-\varepsilon<a\leq\alpha$ +\end_inset + +. + Cuando +\begin_inset Formula $\alpha\in A$ +\end_inset + +, se le llama también máximo. +\end_layout + +\begin_layout Standard +Igualmente, un subconjunto +\begin_inset Formula $\emptyset\neq A\subseteq\mathbb{R}$ +\end_inset + + está acotado inferiormente si +\begin_inset Formula $\exists M\in\mathbb{R}:\forall a\in A,M\leq a$ +\end_inset + +, entonces +\begin_inset Formula $M$ +\end_inset + + es cota inferior de +\begin_inset Formula $A$ +\end_inset + +. + +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + es el ínfimo de +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $\alpha=\inf A$ +\end_inset + +) si es su mayor cota inferior. + Todo cuerpo que verifica el axioma del supremo también cumple que todo + subconjunto no vacío acotado inferiormente tiene ínfimo. + +\series bold +Demostración: +\series default + si +\begin_inset Formula $A$ +\end_inset + + está acotado inferiormente por +\begin_inset Formula $\alpha$ +\end_inset + +, +\begin_inset Formula $-A=\{-a\}_{a\in A}$ +\end_inset + + está acotado superiormente por +\begin_inset Formula $-\alpha$ +\end_inset + +, y si +\begin_inset Formula $\beta$ +\end_inset + + es su supremo, entonces +\begin_inset Formula $-\beta$ +\end_inset + + será el ínfimo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Section +Otras propiedades de los números ( +\begin_inset Formula $\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + y +\begin_inset Formula $\mathbb{R}$ +\end_inset + +) +\end_layout + +\begin_layout Standard +Un subconjunto +\begin_inset Formula $I\subseteq\mathbb{K}$ +\end_inset + + es +\series bold + inductivo +\series default + si +\begin_inset Formula $1\in I$ +\end_inset + + y +\begin_inset Formula $n\in I\implies n+1\in I$ +\end_inset + +. + Todo cuerpo o intersección de conjuntos inductivos es un conjunto inductivo. + Ahora tomemos el +\begin_inset Quotes cld +\end_inset + +bicho +\begin_inset Quotes crd +\end_inset + + +\begin_inset Formula $\bigcap\{I:I\text{ es un conjunto inductivo de }\mathbb{R}\}$ +\end_inset + +, la intersección de todos los conjuntos inductivos y por tanto el más pequeño + de ellos. + Así, el conjunto de +\series bold +números naturales +\series default + +\begin_inset Formula $\mathbb{N}:=\text{bicho}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos definir +\begin_inset Formula $2=1+1$ +\end_inset + +, +\begin_inset Formula $3=2+1$ +\end_inset + +, +\begin_inset Formula $4=3+1$ +\end_inset + +, etc. + Propiedades +\begin_inset Quotes cld +\end_inset + +obvias +\begin_inset Quotes crd +\end_inset + + de los naturales: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n<1,n\notin\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n\in\mathbb{N},\nexists x\in\mathbb{N}:n<x<n+1$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $n=1$ +\end_inset + +: Suponemos +\begin_inset Formula $\exists r\in\mathbb{N}:1<r<2=1+1$ +\end_inset + +. + Entonces +\begin_inset Formula $S=\{n\in\mathbb{N}:1<n<2\}\neq\emptyset\land r\in s$ +\end_inset + +. + Sabemos que +\begin_inset Formula $1\in\mathbb{N}\backslash S$ +\end_inset + +. + Consideremos un número +\begin_inset Formula $m\in\mathbb{N}\backslash S$ +\end_inset + +. + Entonces +\begin_inset Formula $m\leq1\lor m\geq2$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{cc} +n\leq1\implies & n=1\implies n+1=2\in\mathbb{N}\backslash S\\ +n\geq2\implies & n+1\geq2+1=3,\,n+1\in\mathbb{N}\backslash S +\end{array}\implies\mathbb{N}\backslash S=\mathbb{N}\implies S=\emptyset +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostrar resto de propiedades cuando las estudiemos, si no como ejercicio. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n,m\in\mathbb{N},n+m\in\mathbb{N}\land n\cdot m\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n,m\in\mathbb{N},m>n\implies\exists k\in\mathbb{N}:m=n+k$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}:n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}:m\in\mathbb{Z},n\in\mathbb{N}\}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Método de inducción +\end_layout + +\begin_layout Standard +Método de demostración basado en definir un conjunto +\begin_inset Formula $S\subseteq\mathbb{N}$ +\end_inset + + que cumpla la propiedad +\begin_inset Formula $P(n)$ +\end_inset + + a demostrar en +\begin_inset Formula $\mathbb{N}$ +\end_inset + + y demostrar que es inductivo. + Como +\begin_inset Formula $\mathbb{N}$ +\end_inset + + es el conjunto inductivo más pequeño, tenemos +\begin_inset Formula $S=\mathbb{N}$ +\end_inset + +. + Para demostrar esto: +\end_layout + +\begin_layout Enumerate +Comprobamos que +\begin_inset Formula $P(1)$ +\end_inset + + es verdad. +\end_layout + +\begin_layout Enumerate +Demostramos que +\begin_inset Formula $P(n)\implies P(n+1)$ +\end_inset + +. + Para ello, demostramos +\begin_inset Formula $P(n+1)$ +\end_inset + + tomando como propiedad +\begin_inset Formula $P(n)$ +\end_inset + + (la +\series bold +hipótesis de inducción +\series default +). +\end_layout + +\begin_layout Standard +Dado un número natural +\begin_inset Formula $N$ +\end_inset + +, un conjunto +\begin_inset Formula $S\subseteq\{n\in\mathbb{N}:n\geq N\}\subseteq\mathbb{N}$ +\end_inset + + nos sirve para realizar demostraciones para los naturales a partir de un + número arbitrario. + Por último, la +\series bold +versión fuerte +\series default + del método de inducción nos permite definir +\begin_inset Formula $S$ +\end_inset + + tal que +\begin_inset Formula $1\in S$ +\end_inset + + y +\begin_inset Formula $1,2,\dots,n\in S\implies n+1\in S$ +\end_inset + +, y entonces +\begin_inset Formula $S=\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +De esta forma podemos demostrar el +\series bold +Teorema Fundamental de la Aritmética +\series default +, que nos dice que todo número entero +\begin_inset Formula $n\geq2$ +\end_inset + + es primo o producto de primos. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A=\{2\leq n\in\mathbb{N}:n\text{ cumple el Teorema Fund. de la Aritmética}\}$ +\end_inset + +. + Sabemos que +\begin_inset Formula $2\in A$ +\end_inset + +, y queremos demostrar que, si tenemos un +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $2,3,\dots,n\in A$ +\end_inset + +, entonces +\begin_inset Formula $n+1\in A$ +\end_inset + +. + Ahora, o bien +\begin_inset Formula $n+1$ +\end_inset + + es primo, en cuyo caso +\begin_inset Formula $n+1\in A$ +\end_inset + +, o no lo es, pero entonces +\begin_inset Formula $\exists p,q\in\mathbb{N}:1<p,q<n+1:p\cdot q=n+1$ +\end_inset + +, y como hemos supuesto que +\begin_inset Formula $2,3,\dots,n\in A$ +\end_inset + +, entonces +\begin_inset Formula $p,q\in A$ +\end_inset + +. + Como +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + son primos o producto de primos, +\begin_inset Formula $n+1$ +\end_inset + + también lo es, por lo que +\begin_inset Formula $n+1\in A$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Propiedad arquimediana +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{R}$ +\end_inset + + cumple la +\series bold +propiedad arquimediana: +\series default + +\begin_inset Formula $\forall0<y,x\in\mathbb{R},\exists n\in\mathbb{N}:x<ny$ +\end_inset + +. + +\series bold +Demostración: +\series default + De no ser así, +\begin_inset Formula $A:=\{ny:n\in\mathbb{N}\}$ +\end_inset + + estaría acotado superiormente por +\begin_inset Formula $x$ +\end_inset + +. + Sea +\begin_inset Formula $\alpha:=\sup A$ +\end_inset + +; tendríamos que +\begin_inset Formula $\forall n\in\mathbb{N},ny\leq\alpha$ +\end_inset + +. + Por otro lado, +\begin_inset Formula $\alpha-y$ +\end_inset + + no sería cota superior de +\begin_inset Formula $A$ +\end_inset + +, por lo que +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\alpha-y<n_{0}y$ +\end_inset + +. + Por tanto +\begin_inset Formula $\alpha<(n_{0}+1)y$ +\end_inset + +, lo que contradice el hecho de que +\begin_inset Formula $A$ +\end_inset + + esté acotado superiormente por +\begin_inset Formula $\alpha$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Por tanto +\begin_inset Formula $\mathbb{N}$ +\end_inset + + no está acotado superiormente, y +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + no está acotado superior ni inferiormente. +\end_layout + +\begin_layout Standard + +\series bold +Principio de la buena ordenación: +\series default + Todo subconjunto no vacío +\begin_inset Formula $A\subseteq\mathbb{N}$ +\end_inset + + tiene +\series bold +primer elemento +\series default +. + +\series bold +Demostración: +\series default + supongamos que +\begin_inset Formula $A$ +\end_inset + + no tuviera primer elemento y sea +\begin_inset Formula $B:=\mathbb{N}\backslash A$ +\end_inset + + el complementario de +\begin_inset Formula $A$ +\end_inset + +. + Entonces +\begin_inset Formula $1\notin A$ +\end_inset + +, pues de lo contrario tendría primer elemento; por tanto +\begin_inset Formula $1\in B$ +\end_inset + +. + Además, si +\begin_inset Formula $1,\dots,n\in B$ +\end_inset + + entonces +\begin_inset Formula $n+1\in B$ +\end_inset + +, pues de lo contrario tendríamos que +\begin_inset Formula $n+1\in A$ +\end_inset + + sería el primer elemento. + Por tanto +\begin_inset Formula $B=\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $A=\emptyset$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $x\in\mathbb{R}$ +\end_inset + +, llamamos +\series bold +parte entera +\series default + de +\begin_inset Formula $x$ +\end_inset + + o +\begin_inset Formula $[x]$ +\end_inset + + al único +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + que verifica +\begin_inset Formula $m\leq x<m+1$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Demostremos que existe. + Supongamos que +\begin_inset Formula $x\geq1$ +\end_inset + +. + Aplicando la propiedad arquimediana a +\begin_inset Formula $x$ +\end_inset + + y +\begin_inset Formula $1$ +\end_inset + +, se tiene que el conjunto +\begin_inset Formula $\{n\in\mathbb{N}:n>x\}\neq\emptyset$ +\end_inset + +, por lo que tiene un primer elemento +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +. + Si tomamos +\begin_inset Formula $m:=k-1$ +\end_inset + + obtenemos el resultado. + La unicidad se debe a que no existe ningún número natural entre +\begin_inset Formula $1$ +\end_inset + + y +\begin_inset Formula $2$ +\end_inset + + y, por inducción, tampoco entre +\begin_inset Formula $m$ +\end_inset + + y +\begin_inset Formula $m+1$ +\end_inset + + para ningún +\begin_inset Formula $m\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +De aquí podemos obtener que +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es +\series bold +denso +\series default + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, es decir, que si +\begin_inset Formula $x,y\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $x<y$ +\end_inset + +, entonces +\begin_inset Formula $\exists r\in\mathbb{Q}:x<r<y$ +\end_inset + +. + +\series bold +Demostración: +\series default + Por la propiedad arquimediana +\begin_inset Formula $\exists n\in\mathbb{N}:1<n(y-x)$ +\end_inset + +, por lo que +\begin_inset Formula $\frac{1}{n}<y-x$ +\end_inset + +. + Si +\begin_inset Formula $m:=[nx]$ +\end_inset + +, entonces +\begin_inset Formula $m\leq nx<m+1$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\frac{m}{n}\leq x<\frac{m+1}{n}=\frac{m}{n}+\frac{1}{n}\leq x+\frac{1}{n}<x+(y-x)=y +\] + +\end_inset + +Tomamos +\begin_inset Formula $r=\frac{m+1}{n}$ +\end_inset + + para obtener el resultado buscado. +\end_layout + +\begin_layout Subsection +Raíces cuadradas +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $x=y^{2}$ +\end_inset + +, entonces +\begin_inset Formula $y$ +\end_inset + + es una +\series bold +raíz cuadrada +\series default + de +\begin_inset Formula $x$ +\end_inset + +. + Entonces +\begin_inset Formula $-y$ +\end_inset + + también lo es, y +\begin_inset Formula $x$ +\end_inset + + no puede tener más raíces cuadradas. + Definimos +\begin_inset Formula +\[ +\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}:r^{2}<x\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +No existe ningún número racional cuyo cuadrado sea +\begin_inset Formula $2$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Supongamos +\begin_inset Formula $\exists p,q\in\mathbb{N}:\frac{p^{2}}{q^{2}}=2$ +\end_inset + +, siendo +\begin_inset Formula $\frac{p}{q}$ +\end_inset + + irreducible. + Tenemos que +\begin_inset Formula $p^{2}=2q^{2}$ +\end_inset + +, por lo que +\begin_inset Formula $p^{2}$ +\end_inset + + es par. + Por tanto +\begin_inset Formula $p$ +\end_inset + + debe ser par porque si fuera +\begin_inset Formula $p=2k+1$ +\end_inset + +, +\begin_inset Formula $p^{2}=4k^{2}+4k+1$ +\end_inset + + sería impar. + Sea pues +\begin_inset Formula $2p':=p$ +\end_inset + + (con +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + +). + Entonces +\begin_inset Formula $4(p')^{2}=2q^{2}$ +\end_inset + +, por lo que +\begin_inset Formula $2(p')^{2}=q^{2}$ +\end_inset + +. + Por tanto +\begin_inset Formula $\exists q'\in\mathbb{N}:q=2q'$ +\end_inset + +, lo que contradice el hecho de que +\begin_inset Formula $p/q$ +\end_inset + + sea irreducible. +\end_layout + +\begin_layout Plain Layout +La siguiente demostración usa la fórmula +\begin_inset Formula $(1+\varepsilon)^{n}<1+3^{n}\varepsilon\forall n\in\mathbb{N},0<\varepsilon<1$ +\end_inset + +, que demostraremos por inducción. + Para +\begin_inset Formula $n=1$ +\end_inset + + tenemos que +\begin_inset Formula $1+\varepsilon<1+3\varepsilon=1+3\varepsilon$ +\end_inset + +. + Ahora bien, si se cumple para cierto +\begin_inset Formula $n$ +\end_inset + +, podemos probar que se cumple para +\begin_inset Formula $n+1$ +\end_inset + +: +\begin_inset Formula +\[ +1+3^{n+1}\varepsilon=1+3\cdot3^{n}\varepsilon=3\cdot(1+3^{n}\varepsilon)-2>3\cdot(1+\varepsilon)^{n}-2\overset{?}{>}(1+\varepsilon)^{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +La última desigualdad se cumple siempre que +\begin_inset Formula $2\cdot(1+\varepsilon)^{n}>2$ +\end_inset + + y por tanto +\begin_inset Formula $(1+\varepsilon)^{n}>1$ +\end_inset + +, lo cual es verdad, demostrando la fórmula inicial. + Ahora usaremos esta fórmula para demostrar que si +\begin_inset Formula $r\in\mathbb{Q}$ +\end_inset + + con +\begin_inset Formula $r>0$ +\end_inset + + y +\begin_inset Formula $r^{2}<2$ +\end_inset + +, existe un +\begin_inset Formula $t\in\mathbb{Q}$ +\end_inset + + tal que +\begin_inset Formula $r<t$ +\end_inset + + y +\begin_inset Formula $r^{2}<t^{2}<2$ +\end_inset + +. + De igual modo, si +\begin_inset Formula $s\in\mathbb{Q}$ +\end_inset + + con +\begin_inset Formula $s>0$ +\end_inset + + y +\begin_inset Formula $s^{2}>2$ +\end_inset + +, existe +\begin_inset Formula $w\in\mathbb{Q}$ +\end_inset + + tal que +\begin_inset Formula $0<w<s$ +\end_inset + + y +\begin_inset Formula $s^{2}>w^{2}>2$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Para demostrar la primera afirmación debemos ver que es posible encontrar + +\begin_inset Formula $0<\varepsilon\in\mathbb{Q}$ +\end_inset + + tal que si +\begin_inset Formula $t:=r(1+\varepsilon)$ +\end_inset + + se tenga +\begin_inset Formula $t^{2}<2$ +\end_inset + +. + Pero usando la afirmación anterior tenemos que +\begin_inset Formula $t^{2}=r^{2}(1+\varepsilon)^{2}<r^{2}(1+9\varepsilon)$ +\end_inset + +, y queda encontrar un +\begin_inset Formula $\varepsilon$ +\end_inset + + tal que +\begin_inset Formula $r^{2}(1+9\varepsilon)<2$ +\end_inset + +, lo que se consigue con +\begin_inset Formula $0<\varepsilon<\frac{1}{9}\left(\frac{2}{r^{2}}-1\right)$ +\end_inset + +. + Sabemos que este número existe porque +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es un cuerpo denso. + La demostración de la segunda afirmación es análoga, pero tomando +\begin_inset Formula $w:=\frac{s}{1+\varepsilon}$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Ahora veremos que esto también se cumple con si +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $s$ +\end_inset + + no son necesariamente racionales. + Razonamos igual que antes, pero como no sabemos si +\begin_inset Formula $r$ +\end_inset + + es racional, tampoco sabemos si lo es +\begin_inset Formula $t$ +\end_inset + +, pero sabemos que, como +\begin_inset Formula $r<t$ +\end_inset + +, entonces +\begin_inset Formula $\exists\tau\in\mathbb{Q}:r<\tau<t$ +\end_inset + +. + Por tanto +\begin_inset Formula $r^{2}<\tau^{2}<t^{2}<2$ +\end_inset + +, que es lo que buscamos. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}:r^{2}<2\})$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}:r^{2}<2\}$ +\end_inset + +. + +\begin_inset Formula $1\in A$ +\end_inset + +, por lo que +\begin_inset Formula $A\neq\emptyset$ +\end_inset + +, y está acotado superiormente por +\begin_inset Formula $2$ +\end_inset + +. + Por tanto +\begin_inset Formula $\exists\alpha:=\sup A$ +\end_inset + +. + Ahora debemos demostrar que +\begin_inset Formula $\alpha^{2}=2$ +\end_inset + +. + Si +\begin_inset Formula $\alpha^{2}<2$ +\end_inset + +, tendríamos que +\begin_inset Formula $\exists t\in\mathbb{Q}:\alpha<t\land\alpha^{2}<t^{2}<2$ +\end_inset + +, pero +\begin_inset Formula $t\in A\#$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $\alpha^{2}>2$ +\end_inset + +, +\begin_inset Formula $\exists s\in\mathbb{Q}:\alpha>s\land s^{2}>2$ +\end_inset + +, por lo que +\begin_inset Formula $2<s^{2}<\alpha^{2}$ +\end_inset + + y, como +\begin_inset Formula $s$ +\end_inset + + es cota superior de +\begin_inset Formula $A$ +\end_inset + + con +\begin_inset Formula $s<\alpha$ +\end_inset + +, entonces +\begin_inset Formula $\alpha$ +\end_inset + + no es el supremo +\begin_inset Formula $\#$ +\end_inset + +. + Por tanto +\begin_inset Formula $\alpha^{2}=2$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +números irracionales +\series default + a los elementos de +\begin_inset Formula $\mathbb{R}\backslash\text{\mathbb{Q}}$ +\end_inset + +. + Se tiene que si +\begin_inset Formula $x,y\in\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $x<y$ +\end_inset + +, entonces +\begin_inset Formula $\exists z\in\mathbb{R}\backslash\mathbb{Q}:x<z<y$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $w\in\mathbb{Q}:x<w<y$ +\end_inset + +. + Por la propiedad arquimediana, +\begin_inset Formula $\exists n:\frac{\sqrt{2}}{n}<y-w$ +\end_inset + +. + Entonces +\begin_inset Formula $z:=w+\frac{\sqrt{2}}{n}$ +\end_inset + +. + También podemos probar que +\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r:r\in\mathbb{Q},r<x\}$ +\end_inset + +, pues si +\begin_inset Formula $\alpha>x$ +\end_inset + +, +\begin_inset Formula $x$ +\end_inset + + sería una cota superior menor +\begin_inset Formula $\#$ +\end_inset + +, y si fuera menor, entonces +\begin_inset Formula $\exists r\in\mathbb{Q}:\alpha<r<x\#$ +\end_inset + +. + Por esto a +\begin_inset Formula $\mathbb{R}$ +\end_inset + + se le llama tradicionalmente +\begin_inset Quotes cld +\end_inset + +el continuo +\begin_inset Quotes crd +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Valor absoluto +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +|x|:=\begin{cases} +x & \text{si }x\geq0\\ +-x & \text{si }x<0 +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|x|=|-x|\geq0$ +\end_inset + +; +\begin_inset Formula $x\neq0\implies|x|>0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|x|=\max\{x,-x\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|xy|=|x||y|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left|\frac{1}{x}\right|=\frac{1}{|x|}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|x|\leq a\iff-a\leq x\leq a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +|x|=\max\{x,-x\}\leq a\equiv x\leq a\land-x\leq a\equiv-a\leq x\leq a +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad triangular: +\series default + +\begin_inset Formula $|x+y|\leq|x|+|y|$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\begin{array}{c} +-|x|\leq x\leq|x|\\ +-|y|\leq y\leq|y| +\end{array}\implies-(|x|+|y|)\leq x+y\leq(|x|+|y|)\overset{(5)}{\implies}|x+y|\leq|x|+|y| +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left||x|-|y|\right|\leq|x-y|$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\begin{array}{cc} +z:=y-x: & |x+z|\leq|x|+|z|\implies|x+y-x|=|y|\leq|x|+|y-x|\implies\\ + & \implies|y|-|x|\leq|y-x|\\ +z':=x-y: & |y+z'|\leq|y|+|z'|\implies|y+x-y|=|x|\leq|y|+|x-y|\implies\\ + & \implies|x|-|y|\leq|x-y| +\end{array} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left|\sum_{k=1}^{n}x_{k}\right|\leq\sum_{k=1}^{n}|x_{k}|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Se obtiene por inducción sobre la desigualdad triangular. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Distancia +\series default + de +\begin_inset Formula $x$ +\end_inset + + a +\begin_inset Formula $y$ +\end_inset + +: +\begin_inset Formula $d(x,y):=|x-y|$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,y)=0\iff x=y$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,y)=d(y,x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,z)\leq d(x,y)+d(y,z)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $x\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $x>0$ +\end_inset + + y sea +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall r\in\mathbb{Q},r>0,r^{p}<x,\exists t\in\mathbb{Q}:(r<t\land r^{p}<t^{p}<x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall s\in\mathbb{Q},s>0,s^{p}>x,\exists w\in\mathbb{Q}:(0<w<s\land s^{p}>w^{p}>x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists!\alpha\in\mathbb{R},\alpha>0:\alpha^{p}=x$ +\end_inset + +; +\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}:r^{p}<x\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, la +\series bold +raíz +\begin_inset Formula $p$ +\end_inset + +-ésima +\series default + de +\begin_inset Formula $x$ +\end_inset + + se define como el único número real positivo +\begin_inset Formula $\alpha$ +\end_inset + + tal que +\begin_inset Formula $\alpha^{p}=x$ +\end_inset + +. + Lo escribimos como +\begin_inset Formula +\[ +x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r:r\in\mathbb{Q},r^{p}<x\} +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
