diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /fuvr1/n2.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'fuvr1/n2.lyx')
| -rw-r--r-- | fuvr1/n2.lyx | 5306 |
1 files changed, 5306 insertions, 0 deletions
diff --git a/fuvr1/n2.lyx b/fuvr1/n2.lyx new file mode 100644 index 0000000..35de49d --- /dev/null +++ b/fuvr1/n2.lyx @@ -0,0 +1,5306 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures false +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Resultados importantes: +\end_layout + +\begin_layout Enumerate + +\series bold +Ecuación ciclotómica: +\series default + +\begin_inset Formula $(x-y)^{n}=(x-y)(x^{n-1}+x^{n-2}y+\dots+xy^{n-2}+y^{n-1})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad de Bernoulli: +\series default + +\begin_inset Formula $\forall x>-1,x\neq0,n\in\mathbb{N},(1+x)^{n}>1+nx$ +\end_inset + +. +\end_layout + +\begin_layout Section +Convergencia +\end_layout + +\begin_layout Standard +Una +\series bold +sucesión +\series default + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + o +\begin_inset Formula $\mathbb{C}$ +\end_inset + + ( +\begin_inset Formula $K$ +\end_inset + +) es una aplicación +\begin_inset Formula $\phi:\mathbb{N}\rightarrow K$ +\end_inset + + que denotamos como +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}$ +\end_inset + + o +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, con elementos +\begin_inset Formula $a_{n}:=\phi(n)$ +\end_inset + +. + +\begin_inset Formula $a_{n}$ +\end_inset + + es el +\series bold +término general +\series default + de la sucesión, y puede venir dado, por ejemplo, mediante una fórmula explícita + o por recurrencia ( +\series bold +sucesión recurrente +\series default +), como es el caso de la +\series bold +sucesión de Fibonacci +\series default + ( +\begin_inset Formula $a_{1}=a_{2}=1$ +\end_inset + +; +\begin_inset Formula $a_{n}=a_{n-1}+a_{n-2}\forall n\geq3$ +\end_inset + +). +\end_layout + +\begin_layout Standard +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + tiene límite +\begin_inset Formula $a\in K$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{\varepsilon}\in\mathbb{N}:\forall n\in\mathbb{N}(n\geq n_{\varepsilon}\implies|a_{n}-a|<\varepsilon)$ +\end_inset + +. + Escribimos +\begin_inset Formula +\[ +a=\lim_{n\rightarrow\infty}a_{n}=\lim_{n}a_{n} +\] + +\end_inset + +y decimos que +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es convergente con límite +\begin_inset Formula $a$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a=a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +\forall\varepsilon>0,|a_{n}-a|=|a-a|=0<\varepsilon +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}\frac{1}{n}=0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, se trata de demostrar que +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-0|=\frac{1}{n}<\varepsilon$ +\end_inset + +, pero como +\begin_inset Formula $\frac{1}{n}<\frac{1}{n_{0}}$ +\end_inset + +, entonces basta encontrar un +\begin_inset Formula $n_{0}$ +\end_inset + + tal que +\begin_inset Formula $\frac{1}{n_{0}}<\varepsilon$ +\end_inset + +, es decir, +\begin_inset Formula $1<n_{0}\varepsilon$ +\end_inset + +, que existe por la propiedad arquimediana. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}|a_{n}|=|\lim_{n}a_{n}|$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a-a_{n}|<\varepsilon$ +\end_inset + +, pero entonces +\begin_inset Formula +\[ +\left||a|-|a_{n}|\right|\leq|a-a_{n}|<\varepsilon +\] + +\end_inset + +por lo que +\begin_inset Formula $|a|=\lim_{n}|a_{n}|$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}\sqrt{a_{n}}=\sqrt{\lim_{n}a_{n}}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a-a_{n}|<\varepsilon$ +\end_inset + +, pero +\begin_inset Formula +\[ +\left|\sqrt{a}-\sqrt{a_{n}}\right|=\frac{|a-a_{n}|}{\sqrt{a}+\sqrt{a_{n}}}\leq\frac{|a-a_{n}|}{\sqrt{a}}<\frac{\sqrt{a}\varepsilon}{\sqrt{a}}=\varepsilon +\] + +\end_inset + +Nótese que el caso +\begin_inset Formula $a=0$ +\end_inset + + debe ser tratado de forma especial. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $a\leq b$ +\end_inset + +, llamamos +\series bold +intervalo cerrado +\series default + de extremos +\begin_inset Formula $a,b$ +\end_inset + + al conjunto +\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$ +\end_inset + +, +\series bold +intervalo abierto +\series default + a +\begin_inset Formula $(a,b):=\{x\in\mathbb{R}:a<x<b\}$ +\end_inset + + e +\series bold +intervalos semiabiertos +\series default + por la derecha e izquierda, respectivamente, a +\begin_inset Formula $[a,b):=\{x\in\mathbb{R}:a\leq x<b\}$ +\end_inset + + y +\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}:a<x\leq b\}$ +\end_inset + +. + La +\series bold +longitud +\series default + del intervalo es +\begin_inset Formula $b-a$ +\end_inset + +. + Llamamos +\series bold +bola cerrada +\series default + de centro +\begin_inset Formula $x_{0}$ +\end_inset + + y radio +\begin_inset Formula $r>0$ +\end_inset + + al conjunto +\begin_inset Formula $B[x_{0},r]:=\{x\in K:|x-x_{0}|\leq r\}$ +\end_inset + +, y +\series bold +bola abierta +\series default + a +\begin_inset Formula $B(x_{0},r):=\{x\in K:|x-x_{0}|<r\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El límite de una sucesión convergente es único. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Supongamos por reducción al absurdo que +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + tuviera límites +\begin_inset Formula $a\neq b$ +\end_inset + +. + Entonces, dado +\begin_inset Formula $\varepsilon=\frac{|a-b|}{4}>0$ +\end_inset + +, existen +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|a_{n}-a|<\varepsilon$ +\end_inset + + si +\begin_inset Formula $n>n_{1}$ +\end_inset + + y +\begin_inset Formula $|a_{n}-b|<\varepsilon$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + +. + Sea +\begin_inset Formula $n_{0}:=\max\{n_{1},n_{2}\}$ +\end_inset + +, entonces +\begin_inset Formula $|a_{n}-a|,|a_{n}-b|<\varepsilon$ +\end_inset + + si +\begin_inset Formula $n>n_{0},$ +\end_inset + + por lo que +\begin_inset Formula +\[ +|a-b|=|a-a_{n}+a_{n}-b|\leq|a-a_{n}|+|a_{n}-b|<\varepsilon+\varepsilon=\frac{|a-b|}{2}\implies1<\frac{1}{2}\# +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda sucesión convergente es acotada, es decir +\begin_inset Formula $\{a_{n}:n\in\mathbb{N}\}$ +\end_inset + + es un conjunto acotado. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon=1$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a|<1$ +\end_inset + +, por lo que +\begin_inset Formula $|a_{n}|=|a_{n}-a+a|\leq|a_{n}-a|+|a|<1+|a|$ +\end_inset + +. + Llamando +\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a|\}$ +\end_inset + +, se tiene que +\begin_inset Formula $\forall n\in\mathbb{N},|a_{n}|\leq M$ +\end_inset + +, por lo que +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es acotada. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + son convergentes: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a_{n}+b_{n}=\lim_{n}a_{n}+\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $b=\lim_{n}b_{n}$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existen +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|a-a_{n}|<\frac{\varepsilon}{2}$ +\end_inset + + si +\begin_inset Formula $n>n_{1}$ +\end_inset + + y +\begin_inset Formula $|b-b_{n}|<\frac{\varepsilon}{2}$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + +. + Así, dado +\begin_inset Formula $n_{0}=\max\{n_{1},n_{2}\}$ +\end_inset + +, para todo +\begin_inset Formula $n>n_{0}$ +\end_inset + +, +\begin_inset Formula +\[ +|(a+b)-(a_{n}+b_{n})|\leq|a-a_{n}|+|b-b_{n}|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}(a_{n}b_{n})=\lim_{n}a_{n}\cdot\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tenemos que +\begin_inset Formula $\exists\alpha>0:\forall n\in\mathbb{N},|a_{n}|\leq\alpha$ +\end_inset + +, luego +\begin_inset Formula +\[ +|ab-a_{n}b_{n}|=|ab-a_{n}b+a_{n}b-a_{n}b_{n}|\leq|a-a_{n}||b|+|a_{n}||b-b_{n}|\leq|a-a_{n}||b|+\alpha|b-b_{n}| +\] + +\end_inset + +Pero entonces, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existen +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|a-a_{n}|<\frac{\varepsilon}{2(|b|+1)}$ +\end_inset + + si +\begin_inset Formula $n>n_{1}$ +\end_inset + + y +\begin_inset Formula $|b-b_{n}|<\frac{\varepsilon}{2a}$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + +, si +\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2}\}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +|ab-a_{n}b_{n}|\leq|a-a_{n}||b|+\alpha|b-b_{n}|<\frac{\varepsilon}{2(|b|+1)}|b|+\alpha\frac{\varepsilon}{2\alpha}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $b_{n}\neq0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}b_{n}\neq0$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=\frac{\lim_{n}a_{n}}{\lim_{n}b_{n}}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +Si tomamos +\begin_inset Formula $\varepsilon=\frac{|b|}{2}$ +\end_inset + +, existe +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\alpha:=\frac{|b|}{2}<|b_{n}|$ +\end_inset + + para +\begin_inset Formula $n>n_{1}$ +\end_inset + +. + Pero entonces +\begin_inset Formula +\[ +\left|\frac{a}{b}-\frac{a_{n}}{b_{n}}\right|=\frac{|ab_{n}-a_{n}b|}{|b||b_{n}|}=\frac{|ab_{n}-ab+ab-a_{n}b|}{|b||b_{n}|}\leq\frac{|a||b_{n}-b|+|a-a_{n}||b|}{|b|\alpha} +\] + +\end_inset + +Ahora, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existen +\begin_inset Formula $n_{2},n_{3}\in\mathbb{N}$ +\end_inset + + tales que +\begin_inset Formula $|b-b_{n}|<\frac{\varepsilon}{2(|a|+1)}|b|\alpha$ +\end_inset + + si +\begin_inset Formula $n>n_{2}$ +\end_inset + + y +\begin_inset Formula $|a-a_{n}|<\frac{\varepsilon}{2|b|}|b|\alpha$ +\end_inset + + si +\begin_inset Formula $n>n_{3}$ +\end_inset + +. + Ahora, si +\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2},n_{\text{3}}\}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\left|\frac{a}{b}-\frac{a_{n}}{b_{n}}\right|\leq\frac{|a||b_{n}-b|+|a-a_{n}||b|}{|b|\alpha}<|a|\frac{\varepsilon}{2(|a|+1)}+|b|\frac{\varepsilon}{2|b|}<\varepsilon +\] + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +Aunque aquí hemos usado la definición de límite con valores de +\begin_inset Formula $\varepsilon$ +\end_inset + + complicados, esto es innecesario, pues si suponemos +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a|<M\varepsilon$ +\end_inset + + para un +\begin_inset Formula $M$ +\end_inset + + fijo (independiente de +\begin_inset Formula $n$ +\end_inset + +), entonces podemos aplicar lo demostrado para +\begin_inset Formula $\varepsilon^{\prime}=\frac{\varepsilon}{M}$ +\end_inset + +. + Entonces +\begin_inset Formula $\exists n_{0}^{\prime}\in\mathbb{N}:\forall n>n_{0}^{\prime},|a_{n}-a|<M\varepsilon^{\prime}=\varepsilon$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a_{n}\leq b_{n}\forall n\implies\lim_{n}a_{n}\leq\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $a:=\lim_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $b:=\lim_{n}b_{n}$ +\end_inset + +, y supongamos por reducción al absurdo que +\begin_inset Formula $a>b$ +\end_inset + +. + Tomando +\begin_inset Formula $\varepsilon:=\frac{a-b}{4}$ +\end_inset + +, debería existir +\begin_inset Formula $n_{0}$ +\end_inset + + tal que +\begin_inset Formula $|a-a_{n}|<\varepsilon$ +\end_inset + + y +\begin_inset Formula $|b-b_{n}|<\varepsilon$ +\end_inset + + para todo +\begin_inset Formula $n>n_{0}$ +\end_inset + +. + Por tanto, en tal caso, +\begin_inset Formula +\[ +b_{n}=b_{n}-b+b\leq|b_{n}-b|+b<\varepsilon+b<a-\varepsilon<a_{n}\# +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a_{n}<\lim_{n}b_{n}\implies\exists n_{0}\in\mathbb{N}:\forall n>n_{0},a_{n}<b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tomemos un +\begin_inset Formula $\varepsilon$ +\end_inset + + tal que +\begin_inset Formula $a+\varepsilon<b-\varepsilon$ +\end_inset + +. + Entonces existe un +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $a_{n}\in(a-\varepsilon,a+\varepsilon)$ +\end_inset + + y +\begin_inset Formula $b_{n}\in(b-\varepsilon,b+\varepsilon)$ +\end_inset + +, por lo que +\begin_inset Formula $a_{n}<b_{n}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Regla del sandwich: +\series default + +\begin_inset Formula $a_{n}\leq c_{n}\leq b_{n}\land\lim_{n}a_{n}=\lim_{n}b_{n}=\alpha\implies\lim_{n}c_{n}=\alpha$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $a_{n},b_{n}\in B(\alpha,\varepsilon)$ +\end_inset + +, por lo que +\begin_inset Formula $c_{n}\in B(\alpha,\varepsilon)$ +\end_inset + +, pero entonces +\begin_inset Formula $|\alpha-c_{n}|<\varepsilon$ +\end_inset + + para +\begin_inset Formula $n>n_{0}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Sucesiones monótonas acotadas +\end_layout + +\begin_layout Standard +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es +\series bold +creciente +\series default + o +\series bold +monótona creciente +\series default + si +\begin_inset Formula $a_{n}\leq a_{n+1}\forall n\in\mathbb{N}$ +\end_inset + +, y es +\series bold +decreciente +\series default + o +\series bold +monótona decreciente +\series default + si +\begin_inset Formula $a_{n}\geq a_{n+1}\forall n\in\mathbb{N}$ +\end_inset + +. + Decimos que es +\series bold +monótona +\series default + si es creciente o decreciente. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es creciente y acotada superiormente entonces converge a +\begin_inset Formula $\sup\{a_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +, y si es decreciente y acotada inferiormente, converge a +\begin_inset Formula $\inf\{a_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es creciente y acotada superiormente, existe +\begin_inset Formula $\alpha:=\sup\{a_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +. + Entonces, fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\alpha-\varepsilon<a_{n_{0}}$ +\end_inset + +, y al ser creciente, +\begin_inset Formula $\alpha-\varepsilon<a_{n}$ +\end_inset + + para cada +\begin_inset Formula $n>n_{0}$ +\end_inset + +. + El segundo caso es análogo. +\end_layout + +\begin_layout Standard +A continuación definimos el número +\begin_inset Formula $e$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ +\end_inset + + es creciente y acotada. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b_{n}=\left(1+\frac{1}{n}\right)^{n+1}$ +\end_inset + + es decreciente y acotada. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e:=\lim_{n}a_{n}=\lim_{n}b_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +De la desigualdad de Bernoulli, para +\begin_inset Formula $n>1$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{a_{n}}{b_{n-1}}=\left(\frac{n^{2}-1}{n^{2}}\right)^{n}=\left(1-\frac{1}{n^{2}}\right)^{n}>1-n\frac{1}{n^{2}}=\frac{n-1}{n}=\left(1+\frac{1}{n-1}\right)^{-1} +\] + +\end_inset + +luego +\begin_inset Formula $a_{n}>b_{n-1}\left(1+\frac{1}{n-1}\right)^{-1}=\left(1+\frac{1}{n-1}\right)^{n-1}=a_{n-1}$ +\end_inset + + y +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es creciente. + Análogamente, +\begin_inset Formula +\[ +\frac{b_{n-1}}{a_{n}}=\left(\frac{n^{2}}{n^{2}-1}\right)^{n}=\left(1+\frac{1}{n^{2}-1}\right)^{n}>\left(1+\frac{1}{n^{2}}\right)^{n}>1+n\frac{1}{n^{2}}=1+\frac{1}{n} +\] + +\end_inset + +luego +\begin_inset Formula $b_{n-1}>a_{n}(1+\frac{1}{n})=\left(1+\frac{1}{n}\right)^{n+1}=b_{n}$ +\end_inset + + y +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + es decreciente. + Además, +\begin_inset Formula $2=a_{1}<a_{n}<b_{n}<b_{1}=4$ +\end_inset + + para todo +\begin_inset Formula $n$ +\end_inset + +, por lo que ambas son monótonas acotadas y por tanto convergen. + Pero como +\begin_inset Formula $b_{n}=(1+\frac{1}{n})a_{n}$ +\end_inset + + y +\begin_inset Formula $\lim_{n}(1+\frac{1}{n})=1$ +\end_inset + +, se concluye que convergen al mismo límite, que llamamos +\begin_inset Formula $e$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $S_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}S_{n}=e$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Desarrollamos según el binomio de Newton: +\begin_inset Formula +\[ +a_{n}=\left(1+\frac{1}{n}\right)^{n}=\binom{n}{0}+\frac{1}{n}\binom{n}{1}+\frac{1}{n^{2}}\binom{n}{2}+\dots+\frac{1}{n^{n-1}}\binom{n}{n-1}+\frac{1}{n^{n}}\binom{n}{n} +\] + +\end_inset + +Ahora, para +\begin_inset Formula $1\leq k\leq n$ +\end_inset + +: +\begin_inset Formula +\[ +\frac{1}{n^{k}}\binom{n}{k}=\frac{1}{k!}\frac{n(n-1)\cdots(n-k+1)}{n^{k}}=\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{k-1}{n}\right) +\] + +\end_inset + +Entonces +\begin_inset Formula +\[ +a_{n}=1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{n-1}{n}\right)\leq +\] + +\end_inset + + +\begin_inset Formula +\[ +\leq\sum_{k=0}^{n}\frac{1}{k!}=S_{n}<1+1+\frac{1}{2}+\frac{1}{2^{2}}+\dots+\frac{1}{2^{n-1}}<3 +\] + +\end_inset + + +\begin_inset Formula $S_{n}$ +\end_inset + + es creciente y acotada superiormente, luego converge. + Además, para cada +\begin_inset Formula $m$ +\end_inset + + fijo, si +\begin_inset Formula $n>m$ +\end_inset + +, +\begin_inset Formula +\[ +a_{n}=1+\dots+\frac{1}{m!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{m-1}{n}\right)+\dots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{n-1}{n}\right)> +\] + +\end_inset + + +\begin_inset Formula +\[ +>1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\dots+\frac{1}{m!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{m-1}{n}\right) +\] + +\end_inset + +Tomando límites en +\begin_inset Formula $n$ +\end_inset + +, se obtiene que +\begin_inset Formula $e=\lim_{n}a_{n}\geq S_{m}$ +\end_inset + + para todo +\begin_inset Formula $m$ +\end_inset + +. + Por tanto +\begin_inset Formula $a_{n}\leq S_{n}\leq e$ +\end_inset + + y por tanto +\begin_inset Formula $\lim_{n}S_{n}=e$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e$ +\end_inset + + es irracional. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Observamos que +\begin_inset Formula +\[ +e-S_{n}=\lim_{p}\sum_{k=n+1}^{p}\frac{1}{k!} +\] + +\end_inset + +Ahora bien, +\begin_inset Formula +\[ +\sum_{k=n+1}^{p}\frac{1}{k!}=\frac{1}{n!}\sum_{k=1}^{q}\frac{1}{(n+1)\cdots(n+k)}<\frac{1}{n!}\sum_{k=1}^{q}\frac{1}{(n+1)^{k}} +\] + +\end_inset + +Y usando la fórmula de la suma de una progresión geométrica, +\begin_inset Formula +\[ +e-S_{n}=\lim_{q\rightarrow\infty}\sum_{k=n+1}^{n+q}\frac{1}{k!}\leq\frac{1}{n!}\lim_{q}\sum_{k=1}^{q}\frac{1}{(n+1)^{k}}=\frac{1}{n!}\frac{\frac{1}{n+1}}{1-\frac{1}{n+1}}=\frac{1}{n!}\frac{1}{n} +\] + +\end_inset + +Si fuese +\begin_inset Formula $e=\frac{p}{q}$ +\end_inset + +, tomando +\begin_inset Formula $n=q$ +\end_inset + + se tendría que +\begin_inset Formula +\[ +0<\frac{p}{q}-S_{q}<\frac{1}{q!q}\implies0<q!\frac{p}{q}-q!S_{q}<\frac{1}{q} +\] + +\end_inset + +Pero como entonces +\begin_inset Formula $q!\frac{p}{q},q!S_{q}\in\mathbb{N}$ +\end_inset + +, se tendría que +\begin_inset Formula $\exists n\in\mathbb{N}:n<1$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de Bolzano-Weierstrass +\end_layout + +\begin_layout Standard +El +\series bold +principio de encaje de Cantor +\series default + dice que si +\begin_inset Formula $(I_{n})_{n}$ +\end_inset + + es una sucesión de intervalos cerrados de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula $I_{n+1}\subseteq I_{n}$ +\end_inset + + y el límite de la longitud de +\begin_inset Formula $I_{n}$ +\end_inset + + es 0, entonces +\begin_inset Formula $\exists!a\in\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $I_{n}:=[a_{n},b_{n}]$ +\end_inset + +. + Entonces para cualquier +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $b_{k}$ +\end_inset + + es cota superior de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, pues para todo +\begin_inset Formula $n\geq k$ +\end_inset + +, +\begin_inset Formula $a_{1}\leq\dots\leq a_{n}\leq b_{n}\leq b_{k}$ +\end_inset + +. + Por tanto +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge. + Si +\begin_inset Formula $a:=\lim_{n}a_{n}$ +\end_inset + + entonces +\begin_inset Formula $a\leq b_{k}$ +\end_inset + + para todo +\begin_inset Formula $k$ +\end_inset + +, y como +\begin_inset Formula $a_{k}\leq a\leq b_{k}$ +\end_inset + +, entonces +\begin_inset Formula $a\in\bigcap_{n\in\mathbb{N}}I_{n}\neq\emptyset$ +\end_inset + +. + Por otra parte, si suponemos que +\begin_inset Formula $\exists\alpha<\beta:\alpha,\beta\in\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +, entonces +\begin_inset Formula $[\alpha,\beta]\subseteq\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +. + Pero entonces la longitud de todos los +\begin_inset Formula $I_{n}$ +\end_inset + + sería mayor o igual a +\begin_inset Formula $\beta-\alpha>0\#$ +\end_inset + +, de donde se desprende la unicidad. +\end_layout + +\begin_layout Standard +Dadas las sucesiones +\begin_inset Formula $\phi:\mathbb{N}\rightarrow K$ +\end_inset + + y +\begin_inset Formula $\tau:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + estrictamente creciente, la sucesión +\begin_inset Formula $\phi\circ\tau:\mathbb{N}\rightarrow K$ +\end_inset + + es una +\series bold +subsucesión +\series default + de +\begin_inset Formula $\phi$ +\end_inset + +. + Si +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}:=(\phi(n))_{n\in\mathbb{N}}$ +\end_inset + +, entonces +\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}:=(\phi\circ\tau(k))_{k\in\mathbb{N}}$ +\end_inset + +. + Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es convergente, cualquier subsucesión suya converge al mismo límite. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $a=\lim_{n}(a_{n})_{n}$ +\end_inset + +. + Entonces, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, +\begin_inset Formula $\exists p\in\mathbb{N}:\forall n>p,|a_{n}-a|<\varepsilon$ +\end_inset + +. + Entonces, si +\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}$ +\end_inset + + es una subsucesión de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, necesariamente +\begin_inset Formula $k\leq n_{k}$ +\end_inset + + para cualquier +\begin_inset Formula $k$ +\end_inset + +, por lo que si +\begin_inset Formula $k>p$ +\end_inset + + entonces +\begin_inset Formula $|a_{n_{k}}-a|<\varepsilon$ +\end_inset + + y +\begin_inset Formula $\lim_{k}a_{n_{k}}=a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Bolzano-Weierstrass +\series default + afirma que cualquier sucesión acotada en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + posee una subsucesión convergente. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + acotada y +\begin_inset Formula $c_{0},d_{0}\in\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula $c_{0}\leq a_{n}\leq d_{0}\forall n$ +\end_inset + +. + Sea entonces +\begin_inset Formula $I_{0}:=[c_{0},d_{0}]$ +\end_inset + + y +\begin_inset Formula $m_{0}:=\frac{c_{0}+d_{0}}{2}$ +\end_inset + +. + Entonces uno de los conjuntos +\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[c_{0},m_{0}]\}$ +\end_inset + + o +\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[m_{0},d_{0}]\}$ +\end_inset + + es infinito. + Llamamos a este +\begin_inset Formula $I_{1}:=[c_{1},d_{1}]$ +\end_inset + + y tomamos +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $a_{n_{1}}\in I_{1}$ +\end_inset + +. + Entonces dividimos +\begin_inset Formula $I_{1}$ +\end_inset + + por +\begin_inset Formula $m_{1}:=\frac{c_{1}+d_{1}}{2}$ +\end_inset + + y obtenemos, del mismo modo que antes, +\begin_inset Formula $I_{2}=[c_{2},d_{2}]$ +\end_inset + +. + Como es infinito podemos elegir +\begin_inset Formula $n_{2}>n_{1}$ +\end_inset + + tal que +\begin_inset Formula $a_{n_{2}}\in I_{2}$ +\end_inset + +. + Por inducción obtenemos una serie de intervalos +\begin_inset Formula $(I_{k})_{k}$ +\end_inset + + y una subsucesión +\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}$ +\end_inset + + tales que +\begin_inset Formula $I_{k+1}\subsetneq I_{k}$ +\end_inset + + con +\begin_inset Formula $L(I_{k})=\frac{1}{2^{k-1}}L(I_{0})=0$ +\end_inset + +, y +\begin_inset Formula $a_{n_{k}}\in I_{k}$ +\end_inset + +. + Por el principio de encaje de Cantor, se tiene que +\begin_inset Formula $\exists!z\in\bigcap_{k}I_{k}$ +\end_inset + + y por tanto +\begin_inset Formula $z=\lim_{k}a_{n_{k}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí obtenemos que si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es una sucesión acotada y todas sus subsucesiones convergen a +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $a$ +\end_inset + + no fuera el límite de la sucesión, existiría +\begin_inset Formula $\varepsilon_{0}$ +\end_inset + + tal que +\begin_inset Formula $\left|B(a,\varepsilon_{0})^{\complement}\cap\{a_{n}\}_{n\in\mathbb{N}}\right|=\infty$ +\end_inset + +. + Por tanto existiría una subsucesión +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + en +\begin_inset Formula $B(a,\varepsilon_{0})^{\complement}$ +\end_inset + +. + Como esta es acotada, entonces por el teorema de Bolzano-Weierstrass, poseería + una subsucesión +\begin_inset Formula $(b_{n_{k}})_{k}$ +\end_inset + +—que también lo sería de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +—convergente a +\begin_inset Formula $b$ +\end_inset + +. + Pero entonces +\begin_inset Formula $|b_{n}-a|\geq\varepsilon_{0}$ +\end_inset + + para todo +\begin_inset Formula $n$ +\end_inset + + contradiciendo la hipótesis de que cualquier subsucesión que converja tenga + límite +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Sucesiones de Cauchy: completitud +\end_layout + +\begin_layout Standard +Una sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es +\series bold +de Cauchy +\series default + si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall n,m\in\mathbb{N}(n,m\geq n_{0}\implies|a_{m}-a_{n}|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de completitud de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +: +\series default + +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es convergente si y sólo si es de Cauchy. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $a:=\lim_{n}a_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a|<\frac{\varepsilon}{2}$ +\end_inset + +. + Por tanto, si +\begin_inset Formula $n,m>n_{0}$ +\end_inset + +, entonces +\begin_inset Formula $|a_{m}-a_{n}|=|a_{m}-a+a-a_{n}|\leq|a_{m}-a|+|a-a_{n}|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Primero probamos que una sucesión de Cauchy es acotada: Dado +\begin_inset Formula $\varepsilon=1$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a_{n}-a_{n_{0}}|<\varepsilon=1$ +\end_inset + +, de donde +\begin_inset Formula +\[ +|a_{n}|=|a_{n}-a_{n_{0}}+a_{n_{0}}|\leq|a_{n}-a_{n_{0}}|+|a_{n_{0}}|<1+|a_{n_{0}}| +\] + +\end_inset + +y si llamamos +\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a_{n_{0}}|\}$ +\end_inset + + entonces +\begin_inset Formula $a_{1}\leq|a_{n}|\leq M\forall n$ +\end_inset + +. + Ahora, aplicando el teorema de Bolzano-Weierstrass, sabemos que existe + una subsucesión +\begin_inset Formula $(a_{n_{k}})_{k}$ +\end_inset + + convergente, digamos, a +\begin_inset Formula $b$ +\end_inset + +. + Como +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es de Cauchy, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n,m>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $|a_{n}-a_{m}|<\frac{\varepsilon}{2}$ +\end_inset + +. + Por otra parte, como +\begin_inset Formula $\lim_{k}a_{n_{k}}=b$ +\end_inset + +, existe +\begin_inset Formula $k_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $k>k_{0}$ +\end_inset + + entonces +\begin_inset Formula $|a_{n_{k}}-b|<\frac{\varepsilon}{2}$ +\end_inset + +. + Ahora, si +\begin_inset Formula $p>\max\{n_{0},k_{0}\}$ +\end_inset + + y +\begin_inset Formula $n>p$ +\end_inset + +, entonces +\begin_inset Formula +\[ +|a_{n}-b|=|a_{n}-a_{n_{p}}+a_{n_{p}}-b|\leq|a_{n}-a_{n_{p}}|+|a_{n_{p}}-b|\overset{(n_{p}>p)}{<}\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Funciones elementales +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, definimos +\begin_inset Formula $a^{n}:=a\cdots a$ +\end_inset + + ( +\begin_inset Formula $n$ +\end_inset + + veces). + Esta definición puede extenderse a +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + definiendo +\begin_inset Formula $a^{0}:=1$ +\end_inset + + y +\begin_inset Formula $a^{n}=\frac{1}{a^{-n}}$ +\end_inset + + para +\begin_inset Formula $n\in\mathbb{Z}^{-}$ +\end_inset + +. + Con exponentes racionales, se define +\begin_inset Formula $a^{\frac{m}{n}}:=\sqrt[n]{a^{m}}$ +\end_inset + +, y podemos probar fácilmente que si +\begin_inset Formula $\frac{p}{q}=\frac{m}{n}$ +\end_inset + + entonces +\begin_inset Formula $a^{\frac{p}{q}}=a^{\frac{m}{n}}$ +\end_inset + +, para lo cual necesitamos las propiedades de la exponencial: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{r+s}=a^{r}a^{s}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(ab)^{r}=a^{r}b^{r}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(a^{r})^{s}=a^{rs}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $r<s\implies(a>1\implies a^{r}<a^{s})\land(0<a<1\implies a^{r}>a^{s})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0<a<b\implies(r>0\implies a^{r}<b^{r})\land(r<0\implies a^{r}>b^{r})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Podemos demostrar estas propiedades de forma sencilla demostrándolas primero + para exponentes naturales y luego generalizando en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. + Para exponentes reales, definimos +\begin_inset Formula +\[ +a^{x}=\lim_{n}a^{r_{n}} +\] + +\end_inset + +donde +\begin_inset Formula $(r_{n})_{n}$ +\end_inset + + es una sucesión de racionales que converge a +\begin_inset Formula $x$ +\end_inset + +. + Este límite existe y es independiente de la sucesión +\begin_inset Formula $(r_{n})_{n}$ +\end_inset + + escogida. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Primero demostraremos que +\begin_inset Formula $\forall a>0,\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall r\in\mathbb{Q},0<r<\frac{1}{n_{0}},|a^{r}-1|<\varepsilon$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, como +\begin_inset Formula $\lim_{n}a^{\frac{1}{n}}=1$ +\end_inset + +, +\begin_inset Formula $\exists n_{0}\in\mathbb{N}:\forall n>n_{0},|a^{\frac{1}{n}}-1|<\varepsilon$ +\end_inset + +. + Entonces, si +\begin_inset Formula $a>1$ +\end_inset + +, +\begin_inset Formula $0<a^{r}-1<a^{\frac{1}{n_{0}}}-1<\varepsilon$ +\end_inset + +, y si +\begin_inset Formula $0<a<1$ +\end_inset + +, +\begin_inset Formula $a^{r}>a^{\frac{1}{n_{0}}}$ +\end_inset + + luego +\begin_inset Formula $0<1-a^{r}<1-a^{\frac{1}{n_{0}}}<\varepsilon$ +\end_inset + +. + Pasemos a demostrar la existencia de +\begin_inset Formula $\lim_{n}a^{r_{n}}$ +\end_inset + +. + Para +\begin_inset Formula $x>0$ +\end_inset + +, como +\begin_inset Formula $(r_{n})_{n}$ +\end_inset + + es convergente entonces es acotada, por lo que +\begin_inset Formula $\exists K\in\mathbb{Q}:0\leq r_{n}\leq K$ +\end_inset + + a partir de cierto elemento, y entonces +\begin_inset Formula $a^{r_{n}}\leq a^{K}:=M$ +\end_inset + + si +\begin_inset Formula $a>1$ +\end_inset + + o +\begin_inset Formula $a^{r_{n}}<a^{0}=1:=M$ +\end_inset + +. + Así, si +\begin_inset Formula $r_{m}\geq r_{n}$ +\end_inset + +, entonces +\begin_inset Formula $|a^{r_{n}}-a^{r_{m}}|=a^{r_{n}}(a^{r_{m}-r_{n}}-1)\leq M(a^{r_{m}-r_{n}}-1)$ +\end_inset + +, y en general, +\begin_inset Formula $|a^{r_{n}}-a^{r_{m}}|\leq M(a^{|r_{m}-r_{n}|}-1)$ +\end_inset + +, y aplicando lo anteriormente demostrado sobre el lado derecho, se tiene + que +\begin_inset Formula $(a^{r_{n}})_{n}$ +\end_inset + + es de Cauchy. + El caso para +\begin_inset Formula $x<0$ +\end_inset + + es análogo. + Así, fijado +\begin_inset Formula $\frac{1}{m_{1}}>0$ +\end_inset + +, existe +\begin_inset Formula $k_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n,m\geq k_{0}$ +\end_inset + +, +\begin_inset Formula $|r_{n}-r_{m}|<\frac{1}{m_{1}}$ +\end_inset + + y por tanto +\begin_inset Formula $|a^{r_{n}}-a^{r_{m}}|\leq M(a^{|r_{m}-r_{n}|}-1)\leq M\frac{\varepsilon}{M}=\varepsilon$ +\end_inset + +. + Sea ahora +\begin_inset Formula $y:=\lim_{n}a^{r_{n}}$ +\end_inset + + y +\begin_inset Formula $(p_{n})_{n}$ +\end_inset + + otra sucesión de racionales con +\begin_inset Formula $x=\lim_{n}p_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $|a^{r_{n}}-a^{p_{n}}|\leq M(a^{|p_{n}-r_{n}|}-1)$ +\end_inset + +, y fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $|p_{n}-r_{n}|\leq|p_{n}-x|+|x-r_{n}|<\frac{1}{2m_{1}}+\frac{1}{2m_{1}}=\frac{1}{m_{1}}$ +\end_inset + +, y finalmente +\begin_inset Formula $|a^{p_{n}}-y|\leq|a^{p_{n}}-a^{r_{n}}|+|a^{r_{n}}-y|\leq\varepsilon+\varepsilon=2\varepsilon$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +A continuación vemos las propiedades de la exponencial para exponentes reales: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{x+y}=a^{x}a^{y}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Como +\begin_inset Formula $\lim_{n}(q_{n}+r_{n})=\lim_{n}q_{n}+\lim_{n}r_{n}=x+y$ +\end_inset + +, entonces +\begin_inset Formula +\[ +a^{x+y}=\lim_{n}a^{q_{n}+r_{n}}=\lim_{n}(a^{q_{n}}a^{r_{n}})=\lim_{n}a^{q_{n}}+\lim_{n}a^{r_{n}}=a^{x}+a^{y} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(ab)^{x}=a^{x}b^{x}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +(ab)^{x}=\lim_{n}(ab)^{q_{n}}=\lim_{n}a^{q_{n}}b^{q_{n}}=\lim_{n}a^{q_{n}}\lim_{n}b^{q_{n}}=a^{x}b^{x} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(a^{x})^{y}=a^{xy}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Primero probamos que si +\begin_inset Formula $a=\lim_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $q\in\mathbb{Q}$ +\end_inset + + entonces +\begin_inset Formula $\lim_{n}a_{n}^{q}=a^{q}$ +\end_inset + +, es decir, que +\begin_inset Formula $\lim_{n}a_{n}^{q}=(\lim_{n}a_{n})^{q}$ +\end_inset + +. + Sea +\begin_inset Formula $q=\frac{r}{k}>0$ +\end_inset + + y +\begin_inset Formula $a>0$ +\end_inset + +. + Comenzamos probando que +\begin_inset Formula $\lim_{n}a_{n}^{\frac{1}{k}}=a^{\frac{1}{k}}$ +\end_inset + +, para lo que usaremos la ecuación ciclotómica: +\begin_inset Formula +\[ +|a_{n}^{\frac{1}{k}}-a^{\frac{1}{k}}|=\frac{|a_{n}-a|}{a_{n}^{\frac{k-1}{k}}+a_{n}^{\frac{k-2}{k}}a+\dots+a_{n}a^{\frac{k-2}{k}}+a^{\frac{k-1}{k}}}\leq\frac{|a_{n}-a|}{a^{\frac{k-1}{k}}}\leq\frac{a^{\frac{k-1}{k}}\varepsilon}{a^{\frac{k-1}{k}}}=\varepsilon +\] + +\end_inset + +De aquí deducimos que +\begin_inset Formula +\[ +\lim_{n}a_{n}^{q}=\lim_{n}a_{n}^{\frac{r}{k}}=\lim_{n}(a^{\frac{1}{k}})^{r}=\left(\lim_{n}a_{n}^{\frac{1}{k}}\right)^{r}=(a^{\frac{1}{k}})^{r}=a^{\frac{r}{k}}=a^{q} +\] + +\end_inset + +El caso en que +\begin_inset Formula $a<0$ +\end_inset + + es análogo. + Ahora, si +\begin_inset Formula $a=\lim_{n}a_{n}=0$ +\end_inset + +, entonces +\begin_inset Formula $\forall\varepsilon>0,\exists n_{1}\in\mathbb{N}:\forall n>n_{1},a_{n}<\varepsilon^{\frac{1}{q}}$ +\end_inset + +, por lo que +\begin_inset Formula $|a_{n}^{q}-0|=a_{n}^{q}<(\varepsilon^{\frac{1}{q}})^{q}=\varepsilon$ +\end_inset + +. + Pasemos a demostrar que +\begin_inset Formula $(a^{x})^{y}=a^{xy}$ +\end_inset + +. + Si +\begin_inset Formula $a>1$ +\end_inset + + y tomamos +\begin_inset Formula $\lim_{n}r_{n}=x$ +\end_inset + + y +\begin_inset Formula $\lim_{n}q_{n}=y$ +\end_inset + + sucesiones crecientes de racionales, usando las propiedades de monotonía + y límites, +\begin_inset Formula +\[ +(a^{x})^{y}=\sup\{(a^{x})^{q_{m}}\}_{m\in\mathbb{N}}=\sup\{\sup\{(a^{r_{n}})^{q_{m}}\}_{n\in\mathbb{N}}\}_{m\in\mathbb{N}}= +\] + +\end_inset + + +\begin_inset Formula +\[ +=\sup\{\sup\{a^{r_{n}q_{m}}\}_{n\in\mathbb{N}}\}_{m\in\mathbb{N}}=\sup\{a^{xq_{m}}\}_{m\in\mathbb{N}}=a^{xy} +\] + +\end_inset + +El caso +\begin_inset Formula $a<1$ +\end_inset + + se reduce a este tomando inversos, y el caso +\begin_inset Formula $a=1$ +\end_inset + + es trivial. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $x<y\implies(a>1\implies a^{x}<a^{y})\land(0<a<1\implies a^{x}>a^{y})$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $a>1$ +\end_inset + +, sean +\begin_inset Formula $\varepsilon=\frac{y-x}{3}$ +\end_inset + + y +\begin_inset Formula $s,t\in\mathbb{Q}$ +\end_inset + + tales que +\begin_inset Formula $x+\varepsilon<s<t<y-\varepsilon$ +\end_inset + +. + Existe entonces +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $q_{n}<s$ +\end_inset + + y +\begin_inset Formula $t<r_{n}$ +\end_inset + +. + Por tanto +\begin_inset Formula $a^{q_{n}}<a^{s}<a^{t}<a^{r_{n}}$ +\end_inset + +, y tomando límites, +\begin_inset Formula $a^{x}\leq a^{s}<a^{t}\leq a^{y}$ +\end_inset + +. + Para +\begin_inset Formula $0<a<1$ +\end_inset + +, la demostración es análoga. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0<a<b\implies(x>0\implies a^{x}<b^{x})\land(x<0\implies a^{x}>b^{x})$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $x>0$ +\end_inset + +, se trata de demostrar que +\begin_inset Formula $\left(\frac{b}{a}\right)^{x}=\frac{b^{x}}{a^{x}}>1$ +\end_inset + + dado +\begin_inset Formula $\frac{b}{a}>1$ +\end_inset + +. + Sea +\begin_inset Formula $(p_{n})_{n}$ +\end_inset + + una sucesión creciente con límite +\begin_inset Formula $x$ +\end_inset + + tal que +\begin_inset Formula $p_{n}>0$ +\end_inset + +. + Entonces +\begin_inset Formula $\left(\frac{b}{a}\right)^{r_{n}}\geq\left(\frac{b}{a}\right)^{r_{1}}>\left(\frac{b}{a}\right)^{0}=1$ +\end_inset + +, y tomando límites, +\begin_inset Formula $\left(\frac{b}{a}\right)^{x}\geq\left(\frac{b}{a}\right)^{r_{1}}>1$ +\end_inset + +. + Para +\begin_inset Formula $x<0$ +\end_inset + +, como +\begin_inset Formula $a^{y}>0\forall y\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $a^{-x}<b^{-x}\implies\frac{1}{a^{x}}<\frac{1}{b^{x}}\implies b^{x}<a^{x}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}a^{x_{n}}=a^{\lim_{n}x_{n}}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $x:=\lim_{n}x_{n}$ +\end_inset + +. + Como +\begin_inset Formula $|a^{x}-a^{x_{n}}|=|a^{x}||1-a^{x_{n}-x}|$ +\end_inset + +, basta probar que para +\begin_inset Formula $(y_{m})_{m}$ +\end_inset + + con +\begin_inset Formula $\lim_{m}y_{m}=0$ +\end_inset + +, se cumple que +\begin_inset Formula $\lim_{n}a^{y_{m}}=a^{0}=1$ +\end_inset + +. + Ahora, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $a^{\frac{1}{n_{0}}}-1<\varepsilon$ +\end_inset + +. + Si +\begin_inset Formula $y_{m}>0\forall m$ +\end_inset + +, existe +\begin_inset Formula $m_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $m>m_{0}$ +\end_inset + + entonces +\begin_inset Formula $0<y_{m}<\frac{1}{n_{0}}$ +\end_inset + + y +\begin_inset Formula $a^{y_{m}}-1<a^{\frac{1}{n_{0}}}-1<\varepsilon$ +\end_inset + +. + Si +\begin_inset Formula $y_{m}<0\forall m$ +\end_inset + +, existe +\begin_inset Formula $m_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $m>m_{0}$ +\end_inset + + entonces +\begin_inset Formula $0<|y_{m}|<\frac{1}{n_{0}}$ +\end_inset + + y +\begin_inset Formula $1-a^{y_{m}}=1-\frac{1}{a^{-y_{m}}}=\frac{a^{-y_{m}}-1}{a^{-y_{m}}}<\frac{\varepsilon}{1}=\varepsilon$ +\end_inset + + por ser +\begin_inset Formula $a^{-y_{m}}>1$ +\end_inset + +. + Si +\begin_inset Formula $y_{m}$ +\end_inset + + puede cambiar de signo, combinamos ambas pruebas y obtenemos que +\begin_inset Formula $\forall\varepsilon>0,\exists m_{0}\in\mathbb{N}:\forall m>m_{0},|a^{y_{m}}-1|<\varepsilon$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{x}$ +\end_inset + + no está acotada superiormente para +\begin_inset Formula $a>1$ +\end_inset + +: +\begin_inset Formula $a>1\implies\forall k\in\mathbb{R},\exists t\in\mathbb{R}:(x>t\implies a^{x}>k)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Supongamos por reducción al absurdo que +\begin_inset Formula $\exists K\in\mathbb{R}:\forall x\in\mathbb{R},a^{x}\leq K$ +\end_inset + +. + En particular, existe +\begin_inset Formula $K\in\mathbb{R}$ +\end_inset + + tal que para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + se tiene +\begin_inset Formula $a^{n}\leq K$ +\end_inset + + y por tanto +\begin_inset Formula $a\leq K^{\frac{1}{n}}$ +\end_inset + +. + Por otro lado, como +\begin_inset Formula $\lim_{n}K^{\frac{1}{n}}=1$ +\end_inset + + y +\begin_inset Formula $a>1$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $K^{\frac{1}{n}}<a$ +\end_inset + +, por lo que +\begin_inset Formula $a^{n_{0}}>K\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\inf\{a^{x}\}_{x\in\mathbb{R}}=0$ +\end_inset + + para +\begin_inset Formula $a<1$ +\end_inset + +: +\begin_inset Formula $a<1\implies\forall\varepsilon>0,\exists t\in\mathbb{R}:(x>t\implies a^{x}<\varepsilon)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tomamos +\begin_inset Formula $b:=\frac{1}{a}>1$ +\end_inset + + y aplicamos el apartado anterior. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $0<a\neq1$ +\end_inset + + y +\begin_inset Formula $x>0$ +\end_inset + +, +\begin_inset Formula $\exists!y\in\mathbb{R}:a^{y}=x$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Supongamos +\begin_inset Formula $a>1$ +\end_inset + + y sea +\begin_inset Formula $A:=\{z\in\mathbb{R}:a^{z}\leq x\}$ +\end_inset + +, que sabemos acotado superiormente. + Sea entonces +\begin_inset Formula $y:=\sup A$ +\end_inset + + y +\begin_inset Formula $(x_{n})_{n\in\mathbb{N}}$ +\end_inset + + una sucesión de elementos de +\begin_inset Formula $A$ +\end_inset + + que converge a +\begin_inset Formula $y$ +\end_inset + +, por lo que +\begin_inset Formula $a^{x_{n}}\leq x$ +\end_inset + +. + Si fuera +\begin_inset Formula $a^{y}<x$ +\end_inset + +, dado que +\begin_inset Formula $\frac{x}{a^{y}}>1$ +\end_inset + +, existe un +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $a^{\frac{1}{n}}<\frac{x}{a^{y}}$ +\end_inset + +, y si tomamos +\begin_inset Formula $\varepsilon=\frac{1}{n}$ +\end_inset + +, se tiene que +\begin_inset Formula $a^{\varepsilon}<\frac{x}{a^{y}}$ +\end_inset + + y por tanto +\begin_inset Formula $a^{y+\varepsilon}<x$ +\end_inset + +. + Pero esto contradice la definición de +\begin_inset Formula $y$ +\end_inset + + como supremo de +\begin_inset Formula $A$ +\end_inset + +. + Ahora supongamos +\begin_inset Formula $0<a<1$ +\end_inset + + y sea +\begin_inset Formula $a^{\prime}:=\frac{1}{a}>1$ +\end_inset + + y +\begin_inset Formula $x^{\prime}:=\frac{1}{x}$ +\end_inset + +. + Aplicando lo anterior, existe un único +\begin_inset Formula $y\in\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $(a^{\prime})^{y}=x^{\prime}$ +\end_inset + +, es decir, +\begin_inset Formula $\left(\frac{1}{a}\right)^{y}=\frac{1}{a^{y}}=\frac{1}{x}$ +\end_inset + +, luego +\begin_inset Formula $a^{y}=x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +logaritmo +\series default + en +\series bold +base +\series default + +\begin_inset Formula $a$ +\end_inset + + de +\begin_inset Formula $x$ +\end_inset + + ( +\begin_inset Formula $\log_{a}x$ +\end_inset + +) al único +\begin_inset Formula $y\in\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $a^{y}=x$ +\end_inset + +. + Si +\begin_inset Formula $a=e$ +\end_inset + +, lo llamamos +\series bold +logaritmo neperiano +\series default +, escrito +\begin_inset Formula $\log x$ +\end_inset + + o +\begin_inset Formula $\ln x$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log_{a}a^{x}=x$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $z=\log_{a}a^{x}$ +\end_inset + +, este es el único real con +\begin_inset Formula $a^{z}=a^{x}$ +\end_inset + +, luego +\begin_inset Formula $z=x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a^{\log_{a}x}=x$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $z=\log_{a}x$ +\end_inset + +, este es el único real con +\begin_inset Formula $a^{z}=x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log_{a}xy=\log_{a}x+\log_{a}y$ +\end_inset + +; +\begin_inset Formula $\log_{a}\frac{x}{y}=\log_{a}x-\log_{a}y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $\alpha=\log_{a}x$ +\end_inset + + y +\begin_inset Formula $\beta=\log_{a}y$ +\end_inset + +, entonces +\begin_inset Formula $a^{\alpha+\beta}=a^{\alpha}a^{\beta}=xy$ +\end_inset + +, por lo que +\begin_inset Formula $\log_{a}xy=\alpha+\beta=\log_{a}x+\log_{a}y$ +\end_inset + +. + +\begin_inset Formula $a^{\alpha-\beta}=\frac{a^{\alpha}}{a^{\beta}}=\frac{x}{y}$ +\end_inset + +, por lo que +\begin_inset Formula $\log_{a}\frac{x}{y}=\alpha-\beta=\log_{a}x-\log_{a}y$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log_{a}x^{y}=y\log_{a}x$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula +\[ +a^{y\log_{a}x}=(a^{\log_{a}x})^{y}=x^{y}\implies\log_{a}x^{y}=y\log_{a}x +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a>1\land0<x<y\implies\log_{a}x<\log_{a}y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si fuera +\begin_inset Formula $\alpha\geq\beta$ +\end_inset + +, como +\begin_inset Formula $a>1$ +\end_inset + +, se tendría que +\begin_inset Formula $x=a^{\alpha}\geq a^{\beta}=y\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0<a<1\land0<x<y\implies\log_{a}x>\log_{a}y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Newline newline +\end_inset + +Si fuera +\begin_inset Formula $\beta\geq\alpha$ +\end_inset + +, como +\begin_inset Formula $0<a<1$ +\end_inset + +, se tendría que +\begin_inset Formula $y=a^{\beta}\leq a^{\alpha}=x\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}x_{n}>0\land\forall n,x_{n}>0\implies\lim_{n}\log_{a}x_{n}=\log_{a}\lim_{n}x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $x:=\lim_{n}x_{n}>0$ +\end_inset + + y queremos demostrar que +\begin_inset Formula $\lim_{n}\log_{a}x_{n}=\log_{a}x$ +\end_inset + +, lo que equivale a que +\begin_inset Formula $\lim_{n}(\log_{a}x_{n}-\log_{a}x)=0$ +\end_inset + + y por tanto a que +\begin_inset Formula $\lim_{n}\log_{a}\frac{x_{n}}{x}=0$ +\end_inset + +. + Para esto basta probar que si +\begin_inset Formula $(c_{n})_{n}$ +\end_inset + + es una sucesión con +\begin_inset Formula $c_{n}>0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}c_{n}=1$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}\log_{a}c_{n}=0$ +\end_inset + +. + Sea +\begin_inset Formula $\beta_{n}:=\log_{a}c_{n}$ +\end_inset + + y supongamos que +\begin_inset Formula $\lim_{n}\beta_{n}\neq0$ +\end_inset + +. + Debe existir por tanto un +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + exista un +\begin_inset Formula $m>n$ +\end_inset + + con +\begin_inset Formula $|\beta_{m}|>\varepsilon$ +\end_inset + +. + Así, para +\begin_inset Formula $n=1$ +\end_inset + + existe +\begin_inset Formula $n_{1}>1$ +\end_inset + + con +\begin_inset Formula $|\beta_{n_{1}}|>\varepsilon$ +\end_inset + +, y podemos encontrar +\begin_inset Formula $n_{2}>n_{1}$ +\end_inset + + con +\begin_inset Formula $|\beta_{n_{2}}|>\varepsilon$ +\end_inset + +. + Definimos por recurrencia una subsucesión +\begin_inset Formula $(\beta_{n_{k}})_{k}$ +\end_inset + + con +\begin_inset Formula $|\beta_{n_{k}}|>\varepsilon$ +\end_inset + +. + Podemos suponer que todos son positivos o negativos. + Pero entonces, para el primer caso, +\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}>a^{\varepsilon}:=M>a^{0}=1$ +\end_inset + +. + En el segundo caso, +\begin_inset Formula $\beta_{n_{k}}<-\varepsilon$ +\end_inset + + y por tanto +\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}<a^{-\varepsilon}:=M<a^{0}=1$ +\end_inset + +. + Para ambos casos se tiene que +\begin_inset Formula $\lim_{n}c_{n_{k}}\neq1\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\lim_{n}\sin x_{n}=\sin\lim_{n}x_{n}$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\cos x_{n}=\cos\lim_{n}x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $c=\lim_{n}x_{n}$ +\end_inset + +, y se tiene que +\begin_inset Formula $\sin x\leq x\leq\tan x$ +\end_inset + + para +\begin_inset Formula $x\in[0,\frac{\pi}{2}]$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +|\sin x-\sin c|=2\left|\sin\frac{x-c}{2}\cos\frac{x+c}{2}\right|\leq2\left|\sin\frac{x-c}{2}\right|\leq2\frac{|x-c|}{2}=|x-c| +\] + +\end_inset + +Por tanto, fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, sea +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $|x_{n}-c|<\varepsilon$ +\end_inset + +. + Entonces, para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $|\sin x_{n}-\sin c|\leq|x-c|<\varepsilon$ +\end_inset + +. + Para el coseno, +\begin_inset Formula +\[ +|\cos x-\cos c|=\left|-2\sin\frac{x+c}{2}\sin\frac{x-c}{2}\right|\leq2\left|\sin\frac{x-c}{2}\right|\leq|x-c| +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Límites infinitos +\end_layout + +\begin_layout Standard +La sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + de números reales tiene límite +\begin_inset Quotes cld +\end_inset + +más infinito +\begin_inset Quotes crd +\end_inset + + ( +\begin_inset Formula $\lim_{n}a_{n}=+\infty$ +\end_inset + +) si +\begin_inset Formula $\forall M>0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},a_{n}>M$ +\end_inset + +, y tiene límite +\begin_inset Quotes cld +\end_inset + +menos infinito +\begin_inset Quotes crd +\end_inset + + ( +\begin_inset Formula $\lim_{n}a_{n}=-\infty$ +\end_inset + +) si +\begin_inset Formula $\forall M<0,\exists n_{0}\in\mathbb{N}:\forall n>n_{0},a_{n}<M$ +\end_inset + +. + Podemos generalizar el álgebra de límites con: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\begin{array}{ccc} +a+(-\infty)=-\infty & a-(+\infty)=-\infty & a-(-\infty)=+\infty\\ +\frac{a}{\pm\infty}=0 & a>0\implies a(+\infty)=+\infty & a>0\implies a(-\infty)=-\infty\\ +a<0\implies a(+\infty)=-\infty & a<0\implies a(-\infty)=+\infty & (+\infty)+(+\infty)=+\infty\\ +(-\infty)+(-\infty)=-\infty & (+\infty)(+\infty)=+\infty & (-\infty)(-\infty)=+\infty\\ +(+\infty)(-\infty)=-\infty & (+\infty)^{+\infty}=+\infty & (+\infty)^{-\infty}=0 +\end{array} +\] + +\end_inset + +Además, si +\begin_inset Formula $\lim_{n}a_{n}=0$ +\end_inset + +, +\begin_inset Formula $a_{n}>0\forall n$ +\end_inset + + y +\begin_inset Formula $\lim_{n}b_{n}=+\infty$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}a_{n}^{b_{n}}=0$ +\end_inset + +. + Sin embargo, nada puede decirse en general de: +\begin_inset Formula +\[ +\begin{array}{llll} +(+\infty)+(-\infty) & (\pm\infty)\cdot0 & \frac{\pm\infty}{\pm\infty} & \frac{0}{0}\\ +\frac{a}{0} & 1^{\pm\infty} & (\pm\infty)^{0} & 0^{0} +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos a estas situaciones +\series bold +indeterminaciones +\series default +\SpecialChar endofsentence + +\end_layout + +\begin_layout Section +Algunas sucesiones notables. + Jerarquía de sucesiones divergentes +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lim_{n}x_{n}=\pm\infty$ +\end_inset + + entonces +\begin_inset Formula $\lim_{n}\left(1+\frac{1}{x_{n}}\right)^{x_{n}}=e$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\left(1-\frac{1}{x_{n}}\right)^{x_{n}}=e^{-1}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para +\begin_inset Formula $x_{n}=n$ +\end_inset + + es cierto. + Como +\begin_inset Formula $[x_{n}]\leq x_{n}<[x_{n}]+1$ +\end_inset + + y por tanto +\begin_inset Formula $\frac{1}{1+[x_{n}]}<\frac{1}{x_{n}}\leq\frac{1}{[x_{n}]}$ +\end_inset + +, se tiene que +\begin_inset Formula $\left(1+\frac{1}{[x_{n}]+1}\right)^{[x_{n}]}\leq\left(1+\frac{1}{x_{n}}\right)^{[x_{n}]}\leq\left(1+\frac{1}{x_{n}}\right)^{x_{n}}\leq\left(1+\frac{1}{[x_{n}]}\right)^{x_{n}}\leq\left(1+\frac{1}{[x_{n}]}\right)^{[x_{n}]+1}$ +\end_inset + +. + Sabemos además que +\begin_inset Formula $\lim_{n}\left(1+\frac{1}{n+1}\right)^{n}=\lim_{n}\left(1+\frac{1}{n}\right)^{n+1}=e$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{0}$ +\end_inset + +, +\begin_inset Formula $\left|\left(1+\frac{1}{n+1}\right)^{n}-e\right|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $e-\varepsilon<\left(1+\frac{1}{n+1}\right)^{n}<e+\varepsilon$ +\end_inset + +, y +\begin_inset Formula $\left|\left(1+\frac{1}{n}\right)^{n+1}-e\right|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $e-\varepsilon<\left(1+\frac{1}{n}\right)^{n+1}<e+\varepsilon$ +\end_inset + +. + Ahora, como +\begin_inset Formula $\lim_{n}x_{n}=+\infty$ +\end_inset + +, existe +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{1}$ +\end_inset + +, +\begin_inset Formula $n_{0}<[x_{n}]\in\mathbb{N}$ +\end_inset + +, luego lo anterior se cumple, por lo que +\begin_inset Formula $\left|\left(1+\frac{1}{x_{n}}\right)^{x_{n}}-e\right|<\varepsilon$ +\end_inset + +. + La segunda parte se obtiene de que +\begin_inset Formula $\left(1-\frac{1}{x_{n}}\right)^{x_{n}}=\left(\frac{x_{n}}{x_{n}-1}\right)^{-x_{n}}=\frac{1}{\left(1+\frac{1}{x_{n}-1}\right)^{x_{n}}}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si existe +\begin_inset Formula $\lim_{n}\frac{z_{n+1}}{z_{n}}=w\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $|w|<1$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}z_{n}=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Se tendría que existe +\begin_inset Formula $0<a<1$ +\end_inset + + y +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\left|\frac{z_{n+1}}{z_{n}}\right|<a<1$ +\end_inset + +. + En particular, +\begin_inset Formula $|z_{n_{0}+1}|<|z_{n_{0}}|a$ +\end_inset + +, +\begin_inset Formula $|z_{n_{0}+2}|<|z_{n_{0}+1}|a<|z_{n_{0}}|a^{2}$ +\end_inset + +, y en general, +\begin_inset Formula $|z_{n_{0}+k}|<|z_{n_{0}}|a^{k}$ +\end_inset + +. + Pero +\begin_inset Formula $\lim_{n}a_{n}=0$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}|z_{n}|=0$ +\end_inset + + y por tanto +\begin_inset Formula $\lim_{n}z_{n}=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{n}\frac{a_{k}n^{k}+\dots+a_{0}}{b_{r}n^{r}+\dots+b_{0}}=\begin{cases} +\frac{a_{k}}{b_{r}} & \text{si }k=r\\ +0 & \text{si }k<r\\ +\pm\infty & \text{si }k>r\text{, dependiendo del signo de \ensuremath{\frac{a_{k}}{b_{r}}}.} +\end{cases}$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para demostrarlo, en cada caso, dividimos numerador y denominador por +\begin_inset Formula $\min\{k,r\}$ +\end_inset + + y aplicamos propiedades de los límites para +\begin_inset Formula $k=r$ +\end_inset + + (pues ambos existen y son no nulos) y de los límites infinitos para +\begin_inset Formula $k\neq r$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}a_{n}=\infty$ +\end_inset + + y +\begin_inset Formula $\lim_{n}b_{n}=\infty$ +\end_inset + +, entonces +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + es un infinito +\series bold +de orden superior +\series default + a +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + y escribimos +\begin_inset Formula $b_{n}\ll a_{n}$ +\end_inset + + si +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=\infty$ +\end_inset + +. + Si existen +\begin_inset Formula $\alpha$ +\end_inset + + y +\begin_inset Formula $\beta$ +\end_inset + + con +\begin_inset Formula $0<\alpha\leq\frac{a_{n}}{b_{n}}\leq\beta$ +\end_inset + + para +\begin_inset Formula $n>n_{0}$ +\end_inset + +, se dice que ambas tienen el +\series bold +mismo orden de infinitud +\series default +. + Y si además +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=1$ +\end_inset + +, se dice que son +\series bold +equivalentes +\series default +. + Así, si +\begin_inset Formula $b>0$ +\end_inset + +, +\begin_inset Formula $c>1$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\log n\ll n^{b}\ll c^{n}\ll n^{dn} +\] + +\end_inset + +Si además +\begin_inset Formula $d\geq1$ +\end_inset + +, entonces +\begin_inset Formula $c^{n}\ll n!\ll n^{dn}$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Todas, salvo la primera, son consecuencia del apartado (2) anterior. + Así, para demostrar +\begin_inset Formula $n^{b}\ll c^{n}$ +\end_inset + +, tomamos +\begin_inset Formula $z_{n}:=\frac{n^{b}}{c^{n}}$ +\end_inset + + y entonces +\begin_inset Formula $\lim_{n}\frac{z_{n+1}}{z_{n}}=\lim_{n}\frac{(n+1)^{b}c^{n}}{n^{b}c^{n+1}}=\lim_{n}\left(1+\frac{1}{n}\right)^{b}\frac{1}{c}=\frac{1}{c}<1$ +\end_inset + +, por lo que +\begin_inset Formula $\lim_{n}z_{n}=0$ +\end_inset + +. + Para demostrar que +\begin_inset Formula $\log n\ll n^{b}$ +\end_inset + + para +\begin_inset Formula $b>0$ +\end_inset + +, tomamos +\begin_inset Formula $b=1$ +\end_inset + + y tenemos en cuenta que +\begin_inset Formula $\log n=M\log_{10}n$ +\end_inset + +. + Si +\begin_inset Formula $10^{k-1}\leq n<10^{k}$ +\end_inset + +, entonces +\begin_inset Formula $0\leq\frac{log_{10}n}{n}\leq\frac{k}{10^{k-1}}=10\frac{k}{10^{k}}$ +\end_inset + +. + Aplicando el apartado (2) anterior y la regla del sándwich se obtiene el + resultado. + Para +\begin_inset Formula $b>1$ +\end_inset + + el resultado es consecuencia de esto y de que +\begin_inset Formula $n<n^{b}$ +\end_inset + +. + Si +\begin_inset Formula $b<1$ +\end_inset + +, tomamos +\begin_inset Formula $m\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\frac{1}{m}<b$ +\end_inset + +. + Para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existe +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $(k-1)^{m}\leq n<k^{m}$ +\end_inset + +, y además +\begin_inset Formula $\lim_{n}k=+\infty$ +\end_inset + +. + Ahora, puesto que +\begin_inset Formula $0<\frac{\log_{10}n}{n^{b}}\leq\frac{\log_{10}n}{\sqrt[m]{n}}\leq\frac{m\log_{10}k}{k-1}$ +\end_inset + + y hemos probado que +\begin_inset Formula $\lim_{k}\frac{\log_{10}k}{k}=0$ +\end_inset + +, se obtiene que, también en este caso, +\begin_inset Formula $\lim_{n}\log\frac{n}{n^{b}}=0$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Equivalencias +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + con +\begin_inset Formula $0<|x_{n}|<1$ +\end_inset + +, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log(1+x_{n})\sim x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Supongamos +\begin_inset Formula $0<x_{n}<1\forall n$ +\end_inset + +. + Entonces, si +\begin_inset Formula $y_{n}:=\frac{1}{x_{n}}$ +\end_inset + +, +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n})}{x_{n}}=\lim_{n}\log(1+x_{n})^{\frac{1}{x_{n}}}=\lim_{n}\log\left(1+\frac{1}{y_{n}}\right)^{y_{n}}=\log\lim_{n}\left(1+\frac{1}{y_{n}}\right)^{y_{n}}=\log e=1$ +\end_inset + +. + Cuando +\begin_inset Formula $0>x_{n}>-1$ +\end_inset + +, la prueba es idéntica, pues +\begin_inset Formula $\lim_{n}y_{n}=-\infty$ +\end_inset + +. + Para el caso general, los términos de +\begin_inset Formula $x_{n}$ +\end_inset + + se dividen en dos subsucesiones distintas: +\begin_inset Formula $(x_{n}^{\prime})_{n}$ +\end_inset + + de términos positivos y +\begin_inset Formula $(x_{n}^{\prime\prime})_{n}$ +\end_inset + + de negativos. + Entonces +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n}^{\prime})}{x_{n}^{\prime}}=1$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n}^{\prime\prime})}{x_{n}^{\prime\prime}}=1$ +\end_inset + +, por lo que +\begin_inset Formula $\lim_{n}\frac{\log(1+x_{n})}{x_{n}}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e^{x_{n}}-1\sim x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $y_{n}:=e^{x_{n}}-1$ +\end_inset + +, entonces +\begin_inset Formula $y_{n}+1=e^{x_{n}}$ +\end_inset + +, luego +\begin_inset Formula $x_{n}=\log(1+y_{n})$ +\end_inset + +. + Como +\begin_inset Formula $\lim_{n}y_{n}=0$ +\end_inset + +, por el apartado anterior, +\begin_inset Formula $\lim_{n}\frac{e^{x_{n}}-1}{x_{n}}=\lim_{n}\frac{y_{n}}{\log(1+y_{n})}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=1$ +\end_inset + + con +\begin_inset Formula $x_{n}\neq1$ +\end_inset + + y +\begin_inset Formula $\lim_{n}y_{n}=\pm\infty$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}x_{n}^{y_{n}}=e^{\lim_{n}y_{n}(x_{n}-1)} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $(x_{n})^{y_{n}}=e^{y_{n}\log x_{n}}=e^{y_{n}\log(1+(x_{n}-1))}$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}(x_{n})^{y_{n}}=e^{\lim_{n}y_{n}\log(1+(x_{n}-1))}$ +\end_inset + +. + Así, como +\begin_inset Formula $\lim_{n}(x_{n}-1)=0$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}y_{n}\log(1+(x_{n}-1))=\lim_{n}y_{n}(x_{n}-1)\frac{\log(1+(x_{n}-1))}{x_{n-1}}=\lim_{n}y_{n}(x_{n}-1)$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq0$ +\end_inset + +, entonces +\begin_inset Formula $\sin x_{n}\sim x_{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $x\in(0,\frac{\pi}{2})$ +\end_inset + +, se tiene que +\begin_inset Formula $\sin x\leq x\leq\tan x$ +\end_inset + +, luego +\begin_inset Formula $1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}$ +\end_inset + +, y si +\begin_inset Formula $x_{n}>0\forall n\in\mathbb{N}$ +\end_inset + +, entonces +\begin_inset Formula $1\leq\frac{x_{n}}{\sin x_{n}}\leq\frac{1}{\cos x_{n}}$ +\end_inset + +. + Dado que +\begin_inset Formula $\lim_{n}\cos x_{n}=\cos0=1$ +\end_inset + +, por la regla del sandwich, +\begin_inset Formula $\lim_{n}\frac{x_{n}}{\sin x_{n}}=1$ +\end_inset + +. + Si +\begin_inset Formula $x\in(-\frac{\pi}{2},0)$ +\end_inset + +, +\begin_inset Formula $\tan x\leq x\leq\sin x$ +\end_inset + +, luego +\begin_inset Formula $\frac{1}{\cos x}\geq\frac{x}{\sin x}\geq1$ +\end_inset + + por ser +\begin_inset Formula $\sin x>0$ +\end_inset + + y llegamos a la misma conclusión. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Criterios de Stolz: +\series default + Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + son sucesiones de reales tales que +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + es estrictamente creciente o decreciente y bien +\begin_inset Formula $\lim_{n}a_{n}=\lim_{n}b_{n}=0$ +\end_inset + +, bien +\begin_inset Formula $\lim_{n}b_{n}=\infty$ +\end_inset + +, si existe +\begin_inset Formula $\lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L\in\overline{\mathbb{R}}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=L$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $L:=\lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ +\end_inset + +. + Primero vemos que +\begin_inset Formula $\lim_{n}c_{n}=L\in\overline{\mathbb{R}}$ +\end_inset + + puede caracterizarse como que dados +\begin_inset Formula $\alpha<L<\beta$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\alpha<c_{n}<\beta$ +\end_inset + +, donde si +\begin_inset Formula $L=+\infty$ +\end_inset + + entonces +\begin_inset Formula $\beta$ +\end_inset + + está ausente y si +\begin_inset Formula $L=-\infty$ +\end_inset + + lo está +\begin_inset Formula $\alpha$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $\alpha<\frac{a}{b},\frac{c}{d}<\beta$ +\end_inset + + entonces +\begin_inset Formula $\alpha<\frac{a+c}{b+d}<\beta$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha<L<\beta$ +\end_inset + +, existe +\begin_inset Formula $n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + se tiene que +\begin_inset Formula $\alpha<\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}<\beta$ +\end_inset + + y +\begin_inset Formula $\alpha<\frac{a_{n+m}-a_{n+m-1}}{b_{n+m}-b_{n+m-1}}<\beta$ +\end_inset + +, luego sumando, +\begin_inset Formula $\alpha<\frac{a_{n+m}-a_{n}}{b_{n+m}-b_{n}}<\beta$ +\end_inset + +. + Como +\begin_inset Formula $\lim_{m}a_{n+m}=\lim_{m}b_{n+m}=0$ +\end_inset + +, entonces para todo +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\alpha\leq\frac{a_{n}}{b_{n}}\leq\beta$ +\end_inset + +, por lo que +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=L$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dados +\begin_inset Formula $\alpha<L<\beta$ +\end_inset + +, tomamos +\begin_inset Formula $\alpha<\alpha^{\prime}<L<\beta^{\prime}<\beta$ +\end_inset + +. + Procediendo como antes con +\begin_inset Formula $n=n_{0}$ +\end_inset + +, se tiene que +\begin_inset Formula $\alpha^{\prime}<\frac{\frac{a_{n_{0}+m}}{b_{n_{0}+m}}-\frac{a_{n_{0}}}{b_{n_{0}+m}}}{1-\frac{b_{n_{0}}}{b_{n_{0}+m}}}<\beta^{\prime}$ +\end_inset + +, de donde +\begin_inset Formula $\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\alpha^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}<\frac{a_{n_{0}+m}}{b_{n_{0}+m}}<\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\beta^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}$ +\end_inset + +, pero existe +\begin_inset Formula $m_{0}$ +\end_inset + + tal que si +\begin_inset Formula $m\geq m_{0}$ +\end_inset + + se tiene que +\begin_inset Formula $\alpha<\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\alpha^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}$ +\end_inset + + y +\begin_inset Formula $\left(1-\frac{b_{n_{0}}}{b_{n_{0}+m}}\right)\beta^{\prime}+\frac{a_{n_{0}}}{b_{n_{0}+m}}<\beta$ +\end_inset + + lo que, finalmente, establece que +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=L$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como consecuencia: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge, entonces +\begin_inset Formula +\[ +\lim_{n}\frac{a_{1}+\dots+a_{n}}{n}=\lim_{n}a_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge y +\begin_inset Formula $a_{n}>0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}\sqrt[n]{a_{1}\cdots a_{n}}=\lim_{n}a_{n} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $a=\lim_{n}(a_{n})_{n}$ +\end_inset + +. + Si +\begin_inset Formula $a\neq0$ +\end_inset + +, tomando logaritmos, +\begin_inset Formula +\[ +\lim_{n}\log(\sqrt[n]{a_{1}\cdots a_{n}})=\lim_{n}\frac{\log a_{1}+\dots+\log a_{n}}{n}=\lim_{n}\log a_{n}=\log a +\] + +\end_inset + +Si +\begin_inset Formula $a=0$ +\end_inset + +, sea +\begin_inset Formula $0<\varepsilon<1$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{0}$ +\end_inset + +, +\begin_inset Formula $a_{n}<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula +\[ +\sqrt[n]{a_{1}\cdots a_{n_{0}}a_{n_{0}+1}\cdots a_{n}}=\sqrt[n]{a_{1}\cdots a_{n_{0}}}\sqrt[n]{a_{n_{0}+1}\cdots a_{n}}\leq\sqrt[n]{M}\sqrt[n]{\varepsilon^{n-n_{0}}} +\] + +\end_inset + +con +\begin_inset Formula $M:=a_{1}\cdots a_{n_{0}}$ +\end_inset + +. + Si +\begin_inset Formula $\alpha_{n}:=\varepsilon\frac{n-n_{0}}{n}$ +\end_inset + +, +\begin_inset Formula $\lim_{n}\alpha_{n}=\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}\sqrt[n]{M}=1$ +\end_inset + +. + Existe +\begin_inset Formula $n_{1}\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $n_{1}>n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{1}$ +\end_inset + +, +\begin_inset Formula $|M^{\frac{1}{n}}-1|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $M^{\frac{1}{n}}<1+\varepsilon$ +\end_inset + +. + Como +\begin_inset Formula $\lim_{n}\alpha_{n}=\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $n_{2}>n_{1}$ +\end_inset + + tal que para +\begin_inset Formula $n>n_{2}$ +\end_inset + +, +\begin_inset Formula $|\alpha_{n}-\varepsilon|<\frac{\varepsilon}{1+\varepsilon}$ +\end_inset + +, por lo que +\begin_inset Formula $\alpha_{n}<\varepsilon+\frac{\varepsilon}{1+\varepsilon}=\frac{\varepsilon^{2}+2\varepsilon}{1+\varepsilon}\leq\frac{3\varepsilon}{1+\varepsilon}$ +\end_inset + +, luego +\begin_inset Formula $\sqrt[n]{a_{1}\cdots a_{n}}\leq\sqrt[n]{M}\sqrt[n]{\varepsilon^{n-n_{0}}}\leq(1+\varepsilon)\frac{3\varepsilon}{1+\varepsilon}=3\varepsilon$ +\end_inset + +, lo que prueba que +\begin_inset Formula $\lim_{n}\sqrt[n]{a_{1}\cdots a_{n}}=0$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a_{n}>0$ +\end_inset + + y existe +\begin_inset Formula $\lim_{n}\frac{a_{n}}{a_{n-1}}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}\sqrt[n]{a_{n}}=\lim_{n}\frac{a_{n}}{a_{n-1}} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Se tiene que +\begin_inset Formula $\sqrt[n]{a_{n}}=\sqrt[n]{\frac{a_{1}}{1}\frac{a_{2}}{a_{1}}\cdots\frac{a_{n}}{a_{n-1}}}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $A_{n}:=\frac{a_{n}}{a_{n-1}}$ +\end_inset + +, para +\begin_inset Formula $n\geq2$ +\end_inset + + y +\begin_inset Formula $A_{1}=a_{1}$ +\end_inset + +, se obtiene que +\begin_inset Formula $\lim_{n}\sqrt[n]{a_{n}}=\lim_{n}\sqrt[n]{A_{1}\cdots A_{n}}=\lim_{n}A_{n}=\lim_{n}\frac{a_{n}}{a_{n-1}}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Series numéricas +\end_layout + +\begin_layout Standard +Dada una sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + de números reales, podemos formar una sucesión +\begin_inset Formula $(S_{n})_{n}$ +\end_inset + + dada por +\begin_inset Formula $S_{n}=\sum_{1\leq i\leq n}a_{i}$ +\end_inset + +, que llamamos +\series bold +serie +\series default + asociada de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +. + Sus términos se denominan +\series bold +sumas parciales +\series default + de la serie ( +\begin_inset Formula $S_{n}$ +\end_inset + + es la suma parcial +\begin_inset Formula $n$ +\end_inset + +-ésima), y los de +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + +, términos de la serie (el término genérico +\begin_inset Formula $a_{n}$ +\end_inset + + se denomina +\series bold +término general +\series default +). + A +\begin_inset Formula $(S_{n})_{n}$ +\end_inset + + la denotamos como +\begin_inset Formula $a_{1}+\dots+a_{n}+\dots$ +\end_inset + + o +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. + Si +\begin_inset Formula $\lim_{n}S_{n}=S\in\mathbb{R}$ +\end_inset + +, la serie es +\series bold +convergente +\series default + y escribimos +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}=S$ +\end_inset + +. + De lo contrario es +\series bold +divergente +\series default +. +\end_layout + +\begin_layout Standard +La +\series bold +condición de Cauchy +\series default + nos dice que +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + es convergente si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall p,q\in\mathbb{N},(n_{0}\leq p\leq q\implies|a_{p+1}+\dots+a_{q}|<\varepsilon)$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + A partir de la condición de Cauchy para la existencia de límite y que +\begin_inset Formula $|S_{q}-S_{p}|=\left|\sum_{n=1}^{q}a_{n}-\sum_{n=1}^{p}a_{n}\right|=|a_{p+1}+\dots+a_{q}|$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +De aquí, tomando +\begin_inset Formula $q=p+1$ +\end_inset + +, se tiene que si +\begin_inset Formula $S_{n}$ +\end_inset + + converge, entonces +\begin_inset Formula $\lim_{n}a_{n}=0$ +\end_inset + +. + También se tiene que la convergencia de una serie no se altera modificando + un número finito de términos de esta. +\end_layout + +\begin_layout Standard + +\series bold +Linealidad de la suma: +\series default + Si +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}=A$ +\end_inset + + y +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}=B$ +\end_inset + +, entonces para +\begin_inset Formula $\lambda,\mu\in\mathbb{R}$ +\end_inset + +, se tiene que +\begin_inset Formula $\sum_{n=1}^{\infty}(\lambda a_{n}+\mu b_{n})=\lambda A+\mu B$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $S_{n}:=\lambda A_{n}+\mu B_{n}=\sum_{k=1}^{n}\lambda a_{n}+\sum_{k=1}^{n}\mu b_{n}=\sum_{k=1}^{n}(\lambda a_{n}+\mu b_{n})$ +\end_inset + +. + Aplicando las propiedades de límites, +\begin_inset Formula $\lim_{n}S_{n}=\lim_{n}(\lambda A_{n}+\mu B_{n})=\lambda A+\mu B$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dada una serie +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + de términos +\begin_inset Formula $a_{n}\geq0$ +\end_inset + +, esta es convergente si y sólo si la sucesión de sumas parciales es acotada, + pues esta es monótona creciente. +\end_layout + +\begin_layout Standard + +\series bold +Criterios de comparación: +\end_layout + +\begin_layout Enumerate +Dadas +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n},b_{n}\geq0$ +\end_inset + +, si existe +\begin_inset Formula $M>0$ +\end_inset + + tal que +\begin_inset Formula $a_{n}\leq Mb_{n}\forall n$ +\end_inset + +, entonces la convergencia de +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + +, pues significa que esta última es acotada. +\end_layout + +\begin_layout Enumerate +Dadas +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n},b_{n}>0$ +\end_inset + + y existe +\begin_inset Formula $l:=\lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $0<l<\infty$ +\end_inset + +, ambas series tienen el mismo carácter. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $\varepsilon=\frac{l}{2}>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\left|\frac{a_{n}}{b_{n}}-l\right|\leq\frac{l}{2}$ +\end_inset + +, lo que equivale a que +\begin_inset Formula $\frac{l}{2}\leq\frac{a_{n}}{b_{n}}\leq\frac{3}{2}l$ +\end_inset + + y +\begin_inset Formula $\frac{l}{2}b_{n}\leq a_{n}\leq\frac{3l}{2}b_{n}$ +\end_inset + +. + Si +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + es convergente, tenemos que +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + también, y si +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + es convergente, también lo es +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $l=0$ +\end_inset + + entonces la convergencia de +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $\varepsilon=1$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\frac{a_{n}}{b_{n}}\leq1$ +\end_inset + +, luego +\begin_inset Formula $a_{n}\leq b_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $l=+\infty$ +\end_inset + + entonces la convergencia de +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $k=1>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\frac{a_{n}}{b_{n}}\geq1$ +\end_inset + +, luego +\begin_inset Formula $a_{n}\geq b_{n}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Criterio de la raíz: +\series default + Dada +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}>0$ +\end_inset + + y +\begin_inset Formula $a:=\lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<1$ +\end_inset + +, la serie converge. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $r\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $a<r<1$ +\end_inset + +. + Existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\sqrt[n]{a_{n}}<r$ +\end_inset + +, es decir, +\begin_inset Formula $a_{n}<r^{n}$ +\end_inset + +. + Como +\begin_inset Formula $r<1$ +\end_inset + +, la serie geométrica +\begin_inset Formula $\sum_{n}r^{n}$ +\end_inset + + es convergente, y el criterio de comparación nos da la convergencia de + +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>1$ +\end_inset + +, la serie diverge. +\begin_inset Newline newline +\end_inset + +Existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $a_{n}>1$ +\end_inset + +, luego +\begin_inset Formula $\lim_{n}a_{n}\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a=1$ +\end_inset + + no se puede afirmar nada. +\end_layout + +\begin_layout Standard + +\series bold +Criterio del cociente: +\series default + Sea +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}>0$ +\end_inset + + y +\begin_inset Formula $a:=\lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$ +\end_inset + +. + Entonces +\begin_inset Formula $a=\lim_{n}\sqrt[n]{a_{n}}$ +\end_inset + +. + Por tanto: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<1$ +\end_inset + +, la serie converge. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>1$ +\end_inset + +, la serie diverge. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de condensación: +\series default + Dada una sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + monótona decreciente con +\begin_inset Formula $a_{n}>0$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +\sum_{n=1}^{\infty}a_{n}\in\mathbb{R}\iff\sum_{n=1}^{\infty}2^{n}a_{2^{n}}\in\mathbb{R} +\] + +\end_inset + + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A_{n}=\sum_{k=1}^{n}a_{k}$ +\end_inset + + y +\begin_inset Formula $B_{n}=\sum_{k=1}^{n}2^{k}a_{2^{k}}$ +\end_inset + +. + Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula +\begin{gather*} +\begin{array}{c} +B_{n}=2a_{2}+4a_{4}+\dots+2^{n}a_{2^{n}}=2(a_{2}+2a_{4}+\dots+2^{n-1}a_{2^{n}})\leq\\ +\leq2(a_{1}+a_{2}+(a_{3}+a_{4})+\dots+(a_{2^{n-1}+1}+\dots+a_{2^{n}}))=2(a_{1}+\dots+a_{2^{n}})=\\ +=2A_{2^{n}}=2(a_{1}+(a_{2}+a_{3})+(a_{4}+a_{5}+a_{6}+a_{7})+\dots+a_{2^{n}})\leq\\ +\leq2(a_{1}+2a_{2}+4a_{4}+\dots+2^{n-1}a_{2^{n-1}}+a_{2^{n}})=2B_{n-1}+a_{2^{n}} +\end{array} +\end{gather*} + +\end_inset + +Luego para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $B_{n}\leq2A_{2^{n}}\leq2B_{n-1}+a_{1}$ +\end_inset + +, luego si una de las dos está acotada la otra también. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una serie +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}\in\mathbb{R}$ +\end_inset + + es +\series bold +absolutamente convergente +\series default + si +\begin_inset Formula $\sum_{n}|a_{n}|$ +\end_inset + + es convergente. + Toda serie absolutamente convergente es convergente. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, por ser +\begin_inset Formula $\sum_{n}|a_{n}|$ +\end_inset + + convergente, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $p\geq q>n_{0}$ +\end_inset + +, +\begin_inset Formula $|a_{q+1}|+\dots+|a_{p}|<\varepsilon$ +\end_inset + +. + Pero +\begin_inset Formula $|a_{q+1}+\dots+a_{p}|\leq|a_{q+1}|+\dots+|a_{p}|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + cumple la condición de Cauchy y es pues convergente. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una serie es +\series bold +incondicionalmente convergente +\series default + si todas sus reordenadas son convergentes y tienen la misma suma. + +\series bold +Teorema: +\series default + Esta condición equivale a ser absolutamente convergente. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +La +\series bold +serie alternada +\series default + +\begin_inset Formula $\sum_{n}\frac{(-1)^{n+1}}{n}$ +\end_inset + + es convergente. + Además, si +\begin_inset Formula $S$ +\end_inset + + es la suma total y +\begin_inset Formula $S_{n}$ +\end_inset + + la suma parcial +\begin_inset Formula $n$ +\end_inset + +-ésima, +\begin_inset Formula $S_{2n}\leq S\leq S_{2n+1}$ +\end_inset + + y +\begin_inset Formula $|S_{n}-S|<\frac{1}{n+1}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $S_{2n}=\sum_{k=1}^{2n}\frac{(-1)^{k+1}}{k}\leq\sum_{k=1}^{2n}\frac{(-1)^{k+1}}{k}+\frac{1}{2n+1}=S_{2n+1}$ +\end_inset + +. + +\begin_inset Formula $S_{2n}\leq S_{2n}+\frac{1}{2n+1}-\frac{1}{2n+2}=S_{2n+2}$ +\end_inset + +, luego +\begin_inset Formula $(S_{2n})_{n}$ +\end_inset + + es creciente. + De forma análoga tenemos que +\begin_inset Formula $(S_{2n+1})_{n}$ +\end_inset + + es decreciente. + Definimos la sucesión de intervalos cerrados acotados y encajados +\begin_inset Formula $I_{n}:=[S_{2n},S_{2n+1}]$ +\end_inset + +. + Como +\begin_inset Formula $L(I_{n})=|S_{2n+1}-S_{2n}|=\frac{1}{2n+1}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}L(I_{n})=0$ +\end_inset + +, y por Cantor se tiene que existe un único +\begin_inset Formula $S=\bigcap_{n\in\mathbb{N}}I_{n}$ +\end_inset + +, que es +\begin_inset Formula $S=\lim_{n}S_{2n}=\lim_{n}S_{2n+1}=\lim_{n}S_{n}$ +\end_inset + +. + Si +\begin_inset Formula $n=2k$ +\end_inset + +, +\begin_inset Formula $S_{2k}\leq S\leq S_{2k+1}$ +\end_inset + + y por tanto +\begin_inset Formula $|S-S_{2k}|<\frac{1}{2k+1}$ +\end_inset + +, y si +\begin_inset Formula $n=2k+1$ +\end_inset + +, +\begin_inset Formula $S_{2k+2}\leq S\leq S_{2k+1}$ +\end_inset + + y +\begin_inset Formula $|S-S_{2k+1}|\leq|S_{2k+1}-S_{2k+2}|\leq\frac{1}{2k+2}$ +\end_inset + +. + Esto prueba la segunda afirmación. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La +\series bold +serie geométrica +\series default + +\begin_inset Formula $\sum_{n=0}^{\infty}r^{n}$ +\end_inset + + es convergente si +\begin_inset Formula $|r|<1$ +\end_inset + + con suma +\begin_inset Formula $\frac{1}{1-r}$ +\end_inset + + y divergente si +\begin_inset Formula $|r|\geq1$ +\end_inset + +. + La +\series bold +serie armónica +\series default + +\begin_inset Formula $\sum_{n=1}^{\infty}\frac{1}{n^{k}}$ +\end_inset + + es convergente si +\begin_inset Formula $k>1$ +\end_inset + + y divergente si +\begin_inset Formula $k\leq1$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
