diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /fuvr1/n3.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'fuvr1/n3.lyx')
| -rw-r--r-- | fuvr1/n3.lyx | 2202 |
1 files changed, 2202 insertions, 0 deletions
diff --git a/fuvr1/n3.lyx b/fuvr1/n3.lyx new file mode 100644 index 0000000..95517f3 --- /dev/null +++ b/fuvr1/n3.lyx @@ -0,0 +1,2202 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures false +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Límite de una función en un punto +\end_layout + +\begin_layout Standard +Una función es una terna +\begin_inset Formula $(D,F,f)$ +\end_inset + +, escrita como +\begin_inset Formula $f:D\rightarrow F$ +\end_inset + +, donde +\begin_inset Formula $f$ +\end_inset + + asigna a cada +\begin_inset Formula $x\in D$ +\end_inset + + un único valor +\begin_inset Formula $f(x)\in F$ +\end_inset + +. + Llamamos +\series bold +recta real ampliada +\series default + al conjunto +\begin_inset Formula $\overline{\mathbb{R}}:=\mathbb{R}\cup\{+\infty,-\infty\}$ +\end_inset + +. + +\begin_inset Formula $V$ +\end_inset + + es un +\series bold +entorno +\series default + de +\begin_inset Formula $x\in K$ +\end_inset + + si +\begin_inset Formula $\exists r>0:B(x,r)\subseteq V$ +\end_inset + +, y +\begin_inset Formula $x$ +\end_inset + + es un +\series bold +punto de acumulación +\series default + de +\begin_inset Formula $A\subseteq K$ +\end_inset + + si +\begin_inset Formula $\forall r>0,\exists x^{\prime}\neq x:x^{\prime}\in B(x,r)\cap A$ +\end_inset + +. + Se tiene entonces que +\begin_inset Formula $x$ +\end_inset + + es un punto de acumulación de +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + si y sólo si existe +\begin_inset Formula $(x_{n})_{n}\subseteq A$ +\end_inset + + con +\begin_inset Formula $x_{n}\neq x\forall n$ +\end_inset + + y +\begin_inset Formula $x=\lim_{n}x_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $B(x,\frac{1}{n})\cap A$ +\end_inset + + debe contener algún punto distinto de +\begin_inset Formula $x$ +\end_inset + +. + Si +\begin_inset Formula $x_{n}$ +\end_inset + + es uno de esos puntos, +\begin_inset Formula $\lim_{n}x_{n}=x$ +\end_inset + +, pues +\begin_inset Formula $|x_{n}-x|<\frac{1}{n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $r>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{0}$ +\end_inset + + entonces +\begin_inset Formula $|x_{n}-x|<r$ +\end_inset + +, es decir, +\begin_inset Formula $x_{n}\in B(x,r)$ +\end_inset + +, luego +\begin_inset Formula $x_{n}\in B(x,r)\cap A$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq x$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, +\begin_inset Formula $L$ +\end_inset + + es el límite de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula +\[ +\lim_{x\rightarrow c}f(x)=L +\] + +\end_inset + +si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(0<|x-c|<\delta\implies|f(x)-L|<\varepsilon)$ +\end_inset + +. + Dicho de otro modo, si +\begin_inset Formula $\forall B(L,\varepsilon),\exists B(c,\delta):f((B(c,\delta)\cap D)\backslash\{c\})\subseteq B(L,\varepsilon)$ +\end_inset + +. + Se tiene entonces que +\begin_inset Formula $L=\lim_{x\rightarrow c}f(x)\iff\forall(x_{n})_{n}\subseteq D,(\lim_{n}x_{n}=c\land\forall n\in\mathbb{N},x_{n}\neq c\implies L=\lim_{n}f(x_{n}))$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +La implicación directa se demuestra ayudándose de un esquema, y la inversa + se realiza por reducción al absurdo. +\end_layout + +\end_inset + + Si existe el límite de una función en un punto, este es único. +\end_layout + +\begin_layout Standard + +\series bold +Condición de Cauchy: +\series default + Dados +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, entonces +\begin_inset Formula $\exists\lim_{x\rightarrow c}f(x)\in K\iff\forall\varepsilon>0,\exists\delta>0:\forall x,y\in B(c,\delta)\backslash\{c\},|f(x)-f(y)|<\varepsilon$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $L:=\lim_{x\rightarrow c}f(x)$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que para +\begin_inset Formula $0\leq|x-c|<\delta$ +\end_inset + + (es decir, +\begin_inset Formula $x\in B(c,\delta)\backslash\{c\}$ +\end_inset + +), +\begin_inset Formula $|L-f(x)|<\frac{\varepsilon}{2}$ +\end_inset + +. + Análogamente, para +\begin_inset Formula $y\in B(c,\delta)\backslash\{c\}$ +\end_inset + +, +\begin_inset Formula $|L-f(y)|<\frac{\varepsilon}{2}$ +\end_inset + +, luego +\begin_inset Formula $|f(x)-f(y)|=|f(x)-L|+|L-f(y)|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, tomamos +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula $x,y\in B(c,\delta)\backslash\{c\}\implies|f(x)-f(y)|<\varepsilon$ +\end_inset + +. + Para +\begin_inset Formula $(x_{n})_{n}\subseteq D$ +\end_inset + + con +\begin_inset Formula $\lim_{n}x_{n}=c$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq c$ +\end_inset + +, existe +\begin_inset Formula $n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n,m>n_{0}$ +\end_inset + +, +\begin_inset Formula $x_{n},x_{m}\in B(c,\delta)\backslash\{c\}$ +\end_inset + +. + Pero entonces +\begin_inset Formula $|f(x_{n})-f(x_{m})|<\varepsilon$ +\end_inset + +, de modo que +\begin_inset Formula $(f(x_{n}))_{n}$ +\end_inset + + es de Cauchy y por tanto convergente, por lo que existe +\begin_inset Formula $L:=\lim_{n}f(x_{n})$ +\end_inset + + y solo queda probar que +\begin_inset Formula $L$ +\end_inset + + no depende de +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + +. + Dada +\begin_inset Formula $(x_{n}^{\prime})_{n}$ +\end_inset + + con +\begin_inset Formula $\lim_{n}x_{n}^{\prime}=c$ +\end_inset + +, +\begin_inset Formula $x_{n}^{\prime}\neq c$ +\end_inset + + y +\begin_inset Formula $L^{\prime}:=\lim_{n}f(x_{n}^{\prime})$ +\end_inset + + se tendría +\begin_inset Formula $|L-L^{\prime}|=|\lim_{n}f(x_{n})-\lim_{n}f(x_{n}^{\prime})|\leq\varepsilon$ +\end_inset + + para cualquier +\begin_inset Formula $\varepsilon$ +\end_inset + +, ya que al ser +\begin_inset Formula $\lim_{n}x_{n}=c=\lim_{n}x_{n}^{\prime}$ +\end_inset + +, se cumple para +\begin_inset Formula $n>n_{0}^{\prime}$ +\end_inset + + que +\begin_inset Formula $|x_{n}-x_{n}^{\prime}|<\delta$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Tomando límites de sucesiones, podemos concluir que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall k\in\mathbb{N},\lim_{x\rightarrow c}x^{k}=c^{k}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall k\in\mathbb{N},\lim_{x\rightarrow c}\sqrt[k]{x}=\sqrt[k]{c}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}\sin x=\sin c$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Como +\begin_inset Formula $\forall x\in[0,\frac{\pi}{2}],\sin x\leq x\leq\tan x$ +\end_inset + +, +\begin_inset Formula $|\sin x-\sin c|=2\left|\sin\frac{x-c}{2}\cos\frac{x+c}{2}\right|\leq2\left|\frac{x-c}{2}\right|=|x-c|$ +\end_inset + +. + Por tanto para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, tomando +\begin_inset Formula $\delta=\varepsilon$ +\end_inset + +, se tiene que para +\begin_inset Formula $|x-c|<\delta$ +\end_inset + +, +\begin_inset Formula $|\sin x-\sin c|<\varepsilon$ +\end_inset + +. + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow0}\frac{\sin x}{x}=1$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}$ +\end_inset + +, y aplicando el teorema del sandwich, +\begin_inset Formula $\lim_{x\rightarrow0}\frac{x}{\sin x}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}e^{x}=e^{c}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $c\in(0,+\infty)$ +\end_inset + +, +\begin_inset Formula $\lim_{x\rightarrow c}\log x=\log c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $c\notin\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\lim_{x\rightarrow c}[x]=[c]$ +\end_inset + +. + Para +\begin_inset Formula $c\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\nexists\lim_{x\rightarrow c}[x]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\nexists\lim_{x\rightarrow0}\sin\frac{1}{x}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si fuera +\begin_inset Formula $L:=\lim_{x\rightarrow0}\sin\frac{1}{x}$ +\end_inset + +, se tendría que para toda +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + con +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq0$ +\end_inset + + que +\begin_inset Formula $\lim_{n}\sin\frac{1}{x_{n}}=L$ +\end_inset + +, pero las sucesiones +\begin_inset Formula $x_{n}^{\prime}=\frac{1}{n\pi}$ +\end_inset + + y +\begin_inset Formula $x_{n}^{\prime\prime}=\frac{1}{2n\pi+\frac{\pi}{2}}$ +\end_inset + + cumplen que +\begin_inset Formula $\lim_{n}x_{n}^{\prime}=\lim_{n}x_{n}^{\prime\prime}=0$ +\end_inset + +, pero +\begin_inset Formula $\lim_{n}\sin\frac{1}{x_{n}^{\prime}}=0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\sin\frac{1}{x_{n}^{\prime\prime}}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow0}x\sin\frac{1}{x}=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $|x\sin\frac{1}{x}-0|\leq|x|$ +\end_inset + +, por lo que tomando +\begin_inset Formula $\delta=\varepsilon$ +\end_inset + + se cumple la definición. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $f,g:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + + tales que +\begin_inset Formula $L_{1}=\lim_{x\rightarrow c}f(x)\in K$ +\end_inset + + y +\begin_inset Formula $L_{2}=\lim_{x\rightarrow c}g(x)\in K$ +\end_inset + +, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}f(x)+g(x)=L_{1}+L_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lim_{x\rightarrow c}f(x)g(x)=L_{1}L_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $L_{2}\neq0\implies\lim_{x\rightarrow c}\frac{f(x)}{g(x)}=\frac{L_{1}}{L_{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f(x)\leq g(x)\implies L_{1}\leq L_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Regla del sandwich: +\series default + Dada +\begin_inset Formula $h:D\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $f(x)\leq h(x)\leq g(x)$ +\end_inset + + y +\begin_inset Formula $L_{1}=L_{2}=L$ +\end_inset + + entonces +\begin_inset Formula $L=\lim_{x\rightarrow c}h(x)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Equivalencias importantes: +\begin_inset Formula +\[ +\lim_{x\rightarrow0}\frac{e^{x}-1}{x}=\lim_{x\rightarrow0}\frac{\log(1+x)}{x}=\lim_{x\rightarrow0}\frac{\sin x}{x}=\lim_{x\rightarrow0}\frac{1-\cos x}{\frac{x^{2}}{2}}=1 +\] + +\end_inset + + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Las tres primeras se siguen de las propiedades y equivalencias de sucesiones. + Para la cuarta, +\begin_inset Formula +\[ +\lim_{x\rightarrow0}\frac{1-\cos x}{\frac{x^{2}}{2}}=\lim_{x\rightarrow0}\frac{2}{1+\cos x}\frac{1-\cos^{2}x}{x^{2}}=\lim_{x\rightarrow0}\frac{2}{1+\cos x}\frac{\sin^{2}x}{x^{2}}=\frac{2}{1+1}\left(\lim_{x\rightarrow0}\frac{\sin x}{x}\right)^{2}=1 +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Límites laterales: +\series default + Dados +\begin_inset Formula $f:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, llamamos +\series bold +límite por la derecha +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + + a +\begin_inset Formula $f(c^{+})=\lim_{x\rightarrow c^{+}}f(x):=\lim_{x\rightarrow c}g(x)$ +\end_inset + + con +\begin_inset Formula $g:D\cap(c,+\infty)\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $g(x)=f(x)$ +\end_inset + +, y +\series bold +límite por la izquierda +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + + a +\begin_inset Formula $f(c^{-})=\lim_{x\rightarrow c^{-}}f(x):=\lim_{x\rightarrow c}g(x)$ +\end_inset + + con +\begin_inset Formula $g:D\cap(-\infty,c)\rightarrow\mathbb{R}$ +\end_inset + +. + Así, +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\lim_{x\rightarrow c^{+}}f(x)=L$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(c<x<c+\delta\implies|f(x)-L|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\lim_{x\rightarrow c^{-}}f(x)=L$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(c<x<c+\delta\implies|f(x)-L|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Por tanto, el límite de una función en un punto existe si y sólo si existen + los dos límites laterales y coinciden, en cuyo caso coinciden también con + el límite de la función en dicho punto. +\end_layout + +\begin_layout Standard + +\series bold +Límites infinitos y en el infinito: +\series default + Sea +\begin_inset Formula $f:(a,+\infty)\rightarrow\mathbb{R}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{x\rightarrow\infty}f(x)=l\in\mathbb{R}$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists M>0:\forall x\in(a,+\infty),(x>M\implies|f(x)-l|<\varepsilon)$ +\end_inset + +, y +\begin_inset Formula $\lim_{x\rightarrow\infty}f(x)=+\infty$ +\end_inset + + si +\begin_inset Formula $\forall K>0,\exists M>0:\forall x\in(a,+\infty),(x>M\implies f(x)>K)$ +\end_inset + +. + De igual modo, si +\begin_inset Formula $f:D\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + es un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{x\rightarrow c}f(x)=+\infty$ +\end_inset + + si +\begin_inset Formula $\forall K>0,\exists\delta>0:\forall x\in D,(0<|x-c|<\delta\implies f(x)>K)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Funciones continuas +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + es +\series bold +continua +\series default + en +\begin_inset Formula $c$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in D,(|x-c|<\delta\implies|f(x)-f(c)|<\varepsilon)$ +\end_inset + +. + Así, +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + + si y sólo si para cada +\begin_inset Formula $(x_{n})_{n}\subseteq D$ +\end_inset + + con +\begin_inset Formula $c=\lim_{n}x_{n}$ +\end_inset + + se tiene que +\begin_inset Formula $f(c)=\lim_{n}f(x_{n})$ +\end_inset + +. + En particular, +\begin_inset Formula +\[ +f(\lim_{n}x_{n})=\lim_{n}f(x_{n}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dadas +\begin_inset Formula $f,g:D\subseteq K\rightarrow K$ +\end_inset + + continuas en +\begin_inset Formula $c\in D$ +\end_inset + +, entonces +\begin_inset Formula $f+g$ +\end_inset + + y +\begin_inset Formula $fg$ +\end_inset + + también son continuas en +\begin_inset Formula $c$ +\end_inset + +, y si +\begin_inset Formula $g(c)\neq0$ +\end_inset + +, también es continua +\begin_inset Formula $\frac{f}{g}$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $f:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + es continua en +\begin_inset Formula $c\in D$ +\end_inset + + y +\begin_inset Formula $f(c)\neq0$ +\end_inset + + entonces existe un +\begin_inset Formula $\delta>0$ +\end_inset + + tal que para +\begin_inset Formula $x\in B(c,\delta)\cap D$ +\end_inset + +, +\begin_inset Formula $f(x)\neq0$ +\end_inset + + y tiene el mismo signo que +\begin_inset Formula $f(c)$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $c$ +\end_inset + + es un punto aislado de +\begin_inset Formula $D$ +\end_inset + +, es obvio. + Sea entonces +\begin_inset Formula $c$ +\end_inset + + un punto de acumulación de +\begin_inset Formula $D$ +\end_inset + + con +\begin_inset Formula $f(c)\neq0$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon=\frac{|f(c)|}{2}>0$ +\end_inset + +, por la continuidad de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + +, existirá un +\begin_inset Formula $\delta>0$ +\end_inset + + tal que para +\begin_inset Formula $x\in B(c,\delta)$ +\end_inset + +, +\begin_inset Formula $|f(x)-f(c)|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $f(c)-\varepsilon<f(x)<f(c)+\varepsilon$ +\end_inset + +. + Si +\begin_inset Formula $f(c)>0$ +\end_inset + +, entonces +\begin_inset Formula $f(x)>f(c)-\varepsilon=f(c)-\frac{|f(c)|}{2}=\frac{f(c)}{2}>0$ +\end_inset + +, mientras que si +\begin_inset Formula $f(c)<0$ +\end_inset + +, +\begin_inset Formula $f(x)<f(c)+\varepsilon=f(c)+\frac{|f(c)|}{2}=f(c)-\frac{f(c)}{2}=\frac{f(c)}{2}<0$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dadas +\begin_inset Formula $f_{1}:D_{1}\subseteq K\rightarrow D_{2}\subseteq K$ +\end_inset + + continua en +\begin_inset Formula $c\in D_{1}$ +\end_inset + + y +\begin_inset Formula $f_{2}:D_{2}\rightarrow K$ +\end_inset + + continua en +\begin_inset Formula $f_{1}(c)$ +\end_inset + +, entonces +\begin_inset Formula $f_{2}\circ f_{1}:D_{1}\rightarrow K$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +. +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $(x_{n})_{n}\subseteq D$ +\end_inset + + con +\begin_inset Formula $c=\lim_{n}x_{n}$ +\end_inset + +, por la continuidad de +\begin_inset Formula $f_{1}$ +\end_inset + +, +\begin_inset Formula $f_{1}(c)=\lim_{n}f_{1}(x_{n})$ +\end_inset + +, pero al ser +\begin_inset Formula $f_{2}$ +\end_inset + + continua en +\begin_inset Formula $f_{1}(c)$ +\end_inset + +, +\begin_inset Formula $f_{2}(f_{1}(c))=\lim_{n}f_{2}(f_{1}(x_{n}))$ +\end_inset + +, es decir, +\begin_inset Formula $(f_{2}\circ f_{1})(c)=\lim_{n}(f_{2}\circ f_{1})(x_{n})$ +\end_inset + + y por tanto +\begin_inset Formula $f_{2}\circ f_{1}$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + es +\series bold +continua en +\begin_inset Formula $D$ +\end_inset + + +\series default + si es continua en cada punto de +\begin_inset Formula $D$ +\end_inset + +. + Así, las funciones polinómicas, la exponencial, el seno y el coseno son + funciones continuas en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, mientras que el logaritmo es continuo en +\begin_inset Formula $(0,+\infty)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿Incluir las funciones de Dirichlet (3.2.7.8–9)? +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Funciones reales continuas en un intervalo +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Weierstrass +\series default + afirma que si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es continua, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es acotada. +\begin_inset Newline newline +\end_inset + +Si no lo fuera, para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existiría +\begin_inset Formula $x_{n}\in[a,b]$ +\end_inset + + tal que +\begin_inset Formula $|f(x_{n})|>n$ +\end_inset + +. + Por el teorema de Bolzano-Weierstrass, existe una subsucesión +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + de +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + convergente a un +\begin_inset Formula $c\in[a,b]$ +\end_inset + +. + Pero entonces, como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula $\lim_{n}f(x_{n_{k}})_{k}=f(c)$ +\end_inset + +, luego la sucesión es acotada. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existen +\begin_inset Formula $c,d\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c)\leq f(x)\leq f(d)$ +\end_inset + +, es decir, +\begin_inset Formula $f$ +\end_inset + + tiene máximo y mínimo. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $\alpha:=\sup\{f(x):x\in[a,b]\}$ +\end_inset + +, existe +\begin_inset Formula $(x_{n})_{n}\subseteq[a,b]$ +\end_inset + + con +\begin_inset Formula $\alpha=\lim_{n}f(x_{n})$ +\end_inset + +, por lo que existe una subsucesión +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + de +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + convergente a un +\begin_inset Formula $d\in[a,b]$ +\end_inset + +. + Pero por la continuidad de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $f(d)=\lim_{k}f(x_{n_{k}})=\alpha$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + alcanza su máximo absoluto en +\begin_inset Formula $d$ +\end_inset + +. + La demostración de que alcanza su mínimo absoluto es análoga. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Bolzano +\series default + afirma que si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es continua con +\begin_inset Formula $f(a)f(b)<0$ +\end_inset + +, entonces +\begin_inset Formula $\exists c\in(a,b):f(c)=0$ +\end_inset + +. + +\series bold +Demostración: +\series default + Supongamos +\begin_inset Formula $f(a)<0$ +\end_inset + + y +\begin_inset Formula $f(b)>0$ +\end_inset + + y sean +\begin_inset Formula $a_{0}:=a$ +\end_inset + +, +\begin_inset Formula $b_{0}:=b$ +\end_inset + + y +\begin_inset Formula $m:=\frac{a+b}{2}$ +\end_inset + +. + Si +\begin_inset Formula $f(m)=0$ +\end_inset + +, hemos terminado. + Si +\begin_inset Formula $f(m)>0$ +\end_inset + +, llamamos +\begin_inset Formula $a_{1}:=a_{0}$ +\end_inset + + y +\begin_inset Formula $b_{1}:=m$ +\end_inset + +, y si +\begin_inset Formula $f(m)<0$ +\end_inset + + entonces +\begin_inset Formula $a_{1}:=m$ +\end_inset + + y +\begin_inset Formula $b_{1}:=b_{0}$ +\end_inset + +. + Procediendo recursivamente, o bien se encuentra un cero de +\begin_inset Formula $f$ +\end_inset + +, o se obtiene una sucesión +\begin_inset Formula $[a_{n},b_{n}]$ +\end_inset + + de intervalos en las condiciones del principio de encaje de Cantor, por + lo que +\begin_inset Formula $\exists!c\in\bigcap_{n=1}^{\infty}[a_{n},b_{n}]$ +\end_inset + + y +\begin_inset Formula $c=\lim_{n}a_{n}=\lim_{n}b_{n}$ +\end_inset + +. + La continuidad de +\begin_inset Formula $f$ +\end_inset + + junto con que +\begin_inset Formula $f(a_{n})<0$ +\end_inset + + y +\begin_inset Formula $f(b_{n})>0$ +\end_inset + + implica que +\begin_inset Formula $0\leq\lim_{n}f(b_{n})=f(c)=\lim_{n}f(a_{n})\leq0$ +\end_inset + +, por lo que +\begin_inset Formula $f(c)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +método de bisección +\series default + para resolución de ecuaciones es un algoritmo para aproximar raíces de + una función continua, y consiste en localizar un intervalo +\begin_inset Formula $[a,b]$ +\end_inset + + con +\begin_inset Formula $f(a)f(b)<0$ +\end_inset + + y proceder según la demostración del teorema de Bolzano. +\end_layout + +\begin_layout Standard +La +\series bold +propiedad de Darboux +\series default + o +\series bold +de los valores intermedios +\series default + afirma que si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $f(a)<z<f(b)$ +\end_inset + +, entonces +\begin_inset Formula $\exists c\in[a,b]:f(c)=z$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $I$ +\end_inset + + es un intervalo de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es continua, entonces +\begin_inset Formula $f(I)$ +\end_inset + + es un intervalo, y si +\begin_inset Formula $I$ +\end_inset + + es además cerrado y acotado, también lo es +\begin_inset Formula $f(I)$ +\end_inset + +. + +\series bold + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Necesitamos demostrar que dados +\begin_inset Formula $y_{1},y_{2}\in f(I)$ +\end_inset + + con +\begin_inset Formula $y_{1}<y_{2}$ +\end_inset + + y +\begin_inset Formula $y_{1}<z<y_{2}$ +\end_inset + +, +\begin_inset Formula $z\in f(I)$ +\end_inset + +, inmediato de la propiedad de los valores intermedios. + Entonces, si +\begin_inset Formula $I$ +\end_inset + + es cerrado y acotado, por el teorema de Weierstrass, +\begin_inset Formula $f$ +\end_inset + + tiene máximo +\begin_inset Formula $\alpha$ +\end_inset + + y mínimo +\begin_inset Formula $\beta$ +\end_inset + +, por lo que al ser un intervalo, +\begin_inset Formula $f(I)=[\alpha,\beta]$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es +\series bold +monótona creciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})\leq f(x_{2})$ +\end_inset + +, +\series bold +monótona decreciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})\geq f(x_{2})$ +\end_inset + +, +\series bold +monótona +\series default + si es monótona creciente o decreciente; +\series bold +estrictamente creciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})<f(x_{2})$ +\end_inset + +, +\series bold +estrictamente decreciente +\series default + si +\begin_inset Formula $\forall x_{1}<x_{2}\in I,f(x_{1})>f(x_{2})$ +\end_inset + +, y +\series bold +estrictamente monótona +\series default + si es estrictamente creciente o decreciente. + Además, +\begin_inset Formula $f^{-1}:Y\rightarrow X$ +\end_inset + + es la inversa de +\begin_inset Formula $f:X\rightarrow Y$ +\end_inset + + si +\begin_inset Formula $f^{-1}\circ f=Id_{X}$ +\end_inset + + y +\begin_inset Formula $f\circ f^{-1}=Id_{Y}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la función inversa: +\series default + Dada +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + continua, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es inyectiva si y sólo si es estrictamente monótona. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Supongamos por reducción al absurdo que siendo +\begin_inset Formula $f$ +\end_inset + + inyectiva no fuera estrictamente monótona. + Entonces, para +\begin_inset Formula $x_{1}<x_{2}<x_{3}$ +\end_inset + +, +\begin_inset Formula $f(x_{1})$ +\end_inset + +, +\begin_inset Formula $f(x_{2})$ +\end_inset + + y +\begin_inset Formula $f(x_{3})$ +\end_inset + + son distintos dos a dos. + Si fuera +\begin_inset Formula $f$ +\end_inset + + estrictamente monótona se tendría que +\begin_inset Formula $f(x_{1})<f(x_{2})<f(x_{3})$ +\end_inset + + o +\begin_inset Formula $f(x_{1})>f(x_{2})>f(x_{3})$ +\end_inset + +, por lo que si no lo es, entonces +\begin_inset Formula $f(x_{1})<f(x_{2})>f(x_{3})$ +\end_inset + + o +\begin_inset Formula $f(x_{1})>f(x_{2})<f(x_{3})$ +\end_inset + +. + En el caso en que +\begin_inset Formula $f(x_{1})\leq f(x_{3})<f(x_{2})$ +\end_inset + +, por la propiedad de los valores intermedios, debe existir +\begin_inset Formula $c\in(x_{1},x_{2})$ +\end_inset + + con +\begin_inset Formula $f(c)=f(x_{3})$ +\end_inset + +. + Los otros tres casos son análogos. + Por tanto +\begin_inset Formula $f$ +\end_inset + + no es inyectiva. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $x_{1}<x_{2}$ +\end_inset + + no puede ser +\begin_inset Formula $f(x_{1})=f(x_{2})$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es estrictamente monótona, también lo es +\begin_inset Formula $f^{-1}$ +\end_inset + + que, además, es continua. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Al ser +\begin_inset Formula $f$ +\end_inset + + estrictamente monótona es inyectiva, y al ser +\begin_inset Formula $J:=f(I)$ +\end_inset + + un intervalo, existe la inversa +\begin_inset Formula $f^{-1}:J\rightarrow I$ +\end_inset + +, que también es una biyección estrictamente monótona. + Supongamos que es estrictamente creciente y sea +\begin_inset Formula $d\in J$ +\end_inset + + que no sea un extremo del intervalo. + Sea +\begin_inset Formula $c=f^{-1}(d)$ +\end_inset + + ( +\begin_inset Formula $f(c)=d$ +\end_inset + +), que por la monotonía no puede ser un extremo de +\begin_inset Formula $I$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, como +\begin_inset Formula $c$ +\end_inset + + no es un extremo, existe +\begin_inset Formula $0<\varepsilon^{\prime}<\varepsilon$ +\end_inset + + con +\begin_inset Formula $(c-\varepsilon^{\prime},c+\varepsilon^{\prime})\subseteq I$ +\end_inset + +, y por ser +\begin_inset Formula $f$ +\end_inset + + estrictamente creciente, +\begin_inset Formula $d:=f(c)\in(f(c-\varepsilon^{\prime}),f(c+\varepsilon^{\prime}))=f((c-\varepsilon^{\prime},c+\varepsilon^{\prime}))$ +\end_inset + +, por lo que existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que +\begin_inset Formula $B(d,\delta)\subseteq f((c-\varepsilon^{\prime},c+\varepsilon^{\prime}))$ +\end_inset + +, y por el crecimiento escrito de +\begin_inset Formula $f^{-1}$ +\end_inset + +, +\begin_inset Formula $f^{-1}(B(d,\delta))\subseteq(c-\varepsilon^{\prime},c+\varepsilon^{\prime})\subseteq(c-\varepsilon,c+\varepsilon)=B(c,\varepsilon)$ +\end_inset + +, lo que demuestra la continuidad de +\begin_inset Formula $f^{-1}$ +\end_inset + + salvo en los extremos. + En estos casos, si +\begin_inset Formula $d$ +\end_inset + + es un extremo de +\begin_inset Formula $J$ +\end_inset + + y +\begin_inset Formula $c:=f^{-1}(d)$ +\end_inset + + lo es por tanto de +\begin_inset Formula $I$ +\end_inset + +, es posible modificar ligeramente la prueba anterior para obtener el mismo + resultado. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:I\rightarrow J$ +\end_inset + + es biyectiva, entonces +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si es estrictamente monótona. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Contenido en el apartado anterior. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Por ser +\begin_inset Formula $f$ +\end_inset + + estrictamente monótona, existen +\begin_inset Formula $f(x_{0}^{-})$ +\end_inset + + y +\begin_inset Formula $f(x_{0}^{+})$ +\end_inset + + en cada +\begin_inset Formula $x_{0}\in I$ +\end_inset + +. + Si para algún +\begin_inset Formula $x_{0}$ +\end_inset + + fueran distintos (por ejemplo, +\begin_inset Formula $f(x_{0}^{-})<f(x_{0}^{+})$ +\end_inset + +, entonces los puntos de +\begin_inset Formula $(f(x_{0}^{-}),f(x_{0}^{+}))\subseteq J$ +\end_inset + + deberían tener preimagen, pero por la monotonía no la tienen, con lo que + +\begin_inset Formula $f$ +\end_inset + + no sería biyectiva. + Por tanto debe ser +\begin_inset Formula $f(x_{0}^{-})=f(x_{0}^{+})$ +\end_inset + + y la función es continua. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Continuidad uniforme +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:D\subseteq K\rightarrow K$ +\end_inset + + es +\series bold +uniformemente continua +\series default + en +\begin_inset Formula $D$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x,y\in D,(|x-y|<\delta\implies|f(x)-f(y)|<\varepsilon)$ +\end_inset + +. + El +\series bold +teorema de Heine +\series default + afirma que toda +\begin_inset Formula $f:B[a,r]\rightarrow K$ +\end_inset + + continua es uniformemente continua. + +\series bold +Demostración: +\series default + Si no lo fuera, existiría +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que +\begin_inset Formula $\forall\delta>0,\exists x,y\in D:(|x-y|<\delta\land|f(x)-f(y)|>\varepsilon)$ +\end_inset + +, por lo que existirían +\begin_inset Formula $(x_{n})_{n},(x_{n}^{\prime})_{n}\subseteq B[a,r]$ +\end_inset + + tales que +\begin_inset Formula $|x_{n}-x_{n}^{\prime}|<\frac{1}{n}$ +\end_inset + + y +\begin_inset Formula $|f(x_{n})-f(x_{n}^{\prime})|\geq\varepsilon$ +\end_inset + +. + Pero entonces existirían subsucesiones +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + y +\begin_inset Formula $(x_{n_{k}}^{\prime})_{k}$ +\end_inset + + de estas que convergen al mismo +\begin_inset Formula $z\in B[a,r]$ +\end_inset + +. + Por la continuidad de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $\lim_{k}f(x_{n_{k}})=f(z)=\lim_{k}f(x_{n_{k}}^{\prime})$ +\end_inset + +, pero por otra parte +\begin_inset Formula $|f(x_{n_{k}})-f(x_{n_{k}}^{\prime})|\geq\varepsilon>0$ +\end_inset + +. + Tomando límites, se tiene que +\begin_inset Formula $0\geq\varepsilon>0\#$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
