diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fvc/n3.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'fvc/n3.lyx')
| -rw-r--r-- | fvc/n3.lyx | 10 |
1 files changed, 5 insertions, 5 deletions
@@ -87,7 +87,7 @@ Sean \end_inset y -\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ +\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$ \end_inset , @@ -139,7 +139,7 @@ f(z)=\sum_{n=0}^{\infty}c_{n}(z-a)^{n} \end_inset para -\begin_inset Formula $c_{n}:=\frac{f^{(n)}(a)}{n!}$ +\begin_inset Formula $c_{n}\coloneqq \frac{f^{(n)}(a)}{n!}$ \end_inset , y queremos ver que todos los @@ -169,7 +169,7 @@ para \end_inset Sea -\begin_inset Formula $g_{k}(z):=\sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$ +\begin_inset Formula $g_{k}(z)\coloneqq \sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$ \end_inset una función holomorfa en @@ -210,7 +210,7 @@ status open \end_inset Sea -\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ +\begin_inset Formula $A\coloneqq \{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ \end_inset , pues @@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas \end_inset no es idénticamente nula, entonces todo punto de -\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ +\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$ \end_inset es aislado y |
