aboutsummaryrefslogtreecommitdiff
path: root/fvc
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fvc
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'fvc')
-rw-r--r--fvc/n2.lyx44
-rw-r--r--fvc/n3.lyx10
-rw-r--r--fvc/n4.lyx50
3 files changed, 52 insertions, 52 deletions
diff --git a/fvc/n2.lyx b/fvc/n2.lyx
index 61c71c9..55f969a 100644
--- a/fvc/n2.lyx
+++ b/fvc/n2.lyx
@@ -91,7 +91,7 @@ Teorema de Cauchy-Goursat:
\end_inset
y
-\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
+\begin_inset Formula $\Delta(a,b,c)\coloneqq \{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
\end_inset
, entonces
@@ -111,23 +111,23 @@ Teorema de Cauchy-Goursat:
Demostración:
\series default
Sean
-\begin_inset Formula $\gamma:=[a,b,c,a]$
+\begin_inset Formula $\gamma\coloneqq [a,b,c,a]$
\end_inset
,
-\begin_inset Formula $\Delta:=\Delta(a,b,c)$
+\begin_inset Formula $\Delta\coloneqq \Delta(a,b,c)$
\end_inset
,
-\begin_inset Formula $a':=\frac{b+c}{2}$
+\begin_inset Formula $a'\coloneqq \frac{b+c}{2}$
\end_inset
,
-\begin_inset Formula $b':=\frac{a+c}{2}$
+\begin_inset Formula $b'\coloneqq \frac{a+c}{2}$
\end_inset
,
-\begin_inset Formula $c':=\frac{a+b}{2}$
+\begin_inset Formula $c'\coloneqq \frac{a+b}{2}$
\end_inset
e
@@ -156,7 +156,7 @@ Sean
\begin_layout Itemize
Si
-\begin_inset Formula $|J_{k}|:=\max_{i}|J_{i}|$
+\begin_inset Formula $|J_{k}|\coloneqq \max_{i}|J_{i}|$
\end_inset
,
@@ -206,7 +206,7 @@ Para
\end_inset
,
-\begin_inset Formula $F(x):=\frac{x+a}{2}$
+\begin_inset Formula $F(x)\coloneqq \frac{x+a}{2}$
\end_inset
es una biyección de
@@ -218,11 +218,11 @@ Para
\end_inset
, pues si
-\begin_inset Formula $x:=ra+sb+tc$
+\begin_inset Formula $x\coloneqq ra+sb+tc$
\end_inset
,
-\begin_inset Formula $F(x):=\frac{ra+sb+tc+a}{2}=\frac{ra+sb+tc+(r+s+t)a}{2}=ra+s\frac{a+b}{2}+t\frac{a+c}{2}=ra+sc'+tb'$
+\begin_inset Formula $F(x)\coloneqq \frac{ra+sb+tc+a}{2}=\frac{ra+sb+tc+(r+s+t)a}{2}=ra+s\frac{a+b}{2}+t\frac{a+c}{2}=ra+sc'+tb'$
\end_inset
.
@@ -236,7 +236,7 @@ Para
\end_inset
la biyección
-\begin_inset Formula $F(x):=\frac{a+b+c-x}{2}$
+\begin_inset Formula $F(x)\coloneqq \frac{a+b+c-x}{2}$
\end_inset
.
@@ -245,11 +245,11 @@ Para
\end_deeper
\begin_layout Standard
Sean entonces
-\begin_inset Formula $I_{1}:=\max_{i}|J_{i}|$
+\begin_inset Formula $I_{1}\coloneqq \max_{i}|J_{i}|$
\end_inset
,
-\begin_inset Formula $\gamma_{1}:=[a_{1},b_{1},c_{1},a_{1}]$
+\begin_inset Formula $\gamma_{1}\coloneqq [a_{1},b_{1},c_{1},a_{1}]$
\end_inset
la curva correspondiente a
@@ -257,7 +257,7 @@ Sean entonces
\end_inset
y
-\begin_inset Formula $\Delta_{1}:=\Delta(a_{1},b_{1},c_{1})$
+\begin_inset Formula $\Delta_{1}\coloneqq \Delta(a_{1},b_{1},c_{1})$
\end_inset
, con lo que
@@ -297,7 +297,7 @@ Sean entonces
.
Sea
-\begin_inset Formula $p(z):=f(\alpha)+f'(\alpha)(z-\alpha)$
+\begin_inset Formula $p(z)\coloneqq f(\alpha)+f'(\alpha)(z-\alpha)$
\end_inset
una función polinómica y por tanto con primitiva, entonces
@@ -539,11 +539,11 @@ Si
\end_inset
, sean
-\begin_inset Formula $c_{\rho}:=(1-\rho)a+\rho b$
+\begin_inset Formula $c_{\rho}\coloneqq (1-\rho)a+\rho b$
\end_inset
y
-\begin_inset Formula $b_{\rho}:=(1-\rho)a+\rho c$
+\begin_inset Formula $b_{\rho}\coloneqq (1-\rho)a+\rho c$
\end_inset
para
@@ -1221,7 +1221,7 @@ Demostración:
.
Sea
-\begin_inset Formula $f(z):=\frac{1}{p(z)}$
+\begin_inset Formula $f(z)\coloneqq \frac{1}{p(z)}$
\end_inset
,
@@ -1279,7 +1279,7 @@ Demostración:
.
Sea entonces
-\begin_inset Formula $g(z):=\frac{1}{f(z)-\alpha}$
+\begin_inset Formula $g(z)\coloneqq \frac{1}{f(z)-\alpha}$
\end_inset
una función entera, como
@@ -1393,7 +1393,7 @@ luego
\end_inset
, por el teorema de Taylor, sea
-\begin_inset Formula $c_{n}:=\frac{F^{(n)}(\alpha)}{n!}$
+\begin_inset Formula $c_{n}\coloneqq \frac{F^{(n)}(\alpha)}{n!}$
\end_inset
, como
@@ -1473,7 +1473,7 @@ Teorema de convergencia de Weierstrass:
\end_inset
y
-\begin_inset Formula $f(z):=\lim_{n}f_{n}(z)$
+\begin_inset Formula $f(z)\coloneqq \lim_{n}f_{n}(z)$
\end_inset
para
@@ -1583,7 +1583,7 @@ Sean
\end_inset
y
-\begin_inset Formula $H:=\{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$
+\begin_inset Formula $H\coloneqq \{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$
\end_inset
, con lo que
diff --git a/fvc/n3.lyx b/fvc/n3.lyx
index a2494f8..1e9215c 100644
--- a/fvc/n3.lyx
+++ b/fvc/n3.lyx
@@ -87,7 +87,7 @@ Sean
\end_inset
y
-\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
+\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$
\end_inset
,
@@ -139,7 +139,7 @@ f(z)=\sum_{n=0}^{\infty}c_{n}(z-a)^{n}
\end_inset
para
-\begin_inset Formula $c_{n}:=\frac{f^{(n)}(a)}{n!}$
+\begin_inset Formula $c_{n}\coloneqq \frac{f^{(n)}(a)}{n!}$
\end_inset
, y queremos ver que todos los
@@ -169,7 +169,7 @@ para
\end_inset
Sea
-\begin_inset Formula $g_{k}(z):=\sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$
+\begin_inset Formula $g_{k}(z)\coloneqq \sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$
\end_inset
una función holomorfa en
@@ -210,7 +210,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
+\begin_inset Formula $A\coloneqq \{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
\end_inset
, pues
@@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas
\end_inset
no es idénticamente nula, entonces todo punto de
-\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
+\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$
\end_inset
es aislado y
diff --git a/fvc/n4.lyx b/fvc/n4.lyx
index cfd60f7..8feaa83 100644
--- a/fvc/n4.lyx
+++ b/fvc/n4.lyx
@@ -108,7 +108,7 @@ Toda curva
Demostración:
\series default
Sean
-\begin_inset Formula $\rho:=\min_{t\in[a,b]}|\gamma(t)|>0$
+\begin_inset Formula $\rho\coloneqq \min_{t\in[a,b]}|\gamma(t)|>0$
\end_inset
,
@@ -140,7 +140,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $D_{k}:=D(\gamma(t_{k}),\rho)$
+\begin_inset Formula $D_{k}\coloneqq D(\gamma(t_{k}),\rho)$
\end_inset
.
@@ -180,11 +180,11 @@ Demostración:
.
Sean ahora
-\begin_inset Formula $\theta_{k}(t):=A_{k}(\gamma(t))\in\text{Arg}(\gamma(t))$
+\begin_inset Formula $\theta_{k}(t)\coloneqq A_{k}(\gamma(t))\in\text{Arg}(\gamma(t))$
\end_inset
y
-\begin_inset Formula $m_{k}:=\theta_{k}(t_{k})-\theta_{k+1}(t_{k})$
+\begin_inset Formula $m_{k}\coloneqq \theta_{k}(t_{k})-\theta_{k+1}(t_{k})$
\end_inset
, y definimos
@@ -192,7 +192,7 @@ Demostración:
\end_inset
como
-\begin_inset Formula $\theta(t):=\theta_{k}(t)+\sum_{i=0}^{k-1}m_{k}$
+\begin_inset Formula $\theta(t)\coloneqq \theta_{k}(t)+\sum_{i=0}^{k-1}m_{k}$
\end_inset
para
@@ -334,7 +334,7 @@ Sean
\end_inset
,
-\begin_inset Formula $\rho:=\min_{t\in[a,b]}|\gamma(t)-z_{0}|>0$
+\begin_inset Formula $\rho\coloneqq \min_{t\in[a,b]}|\gamma(t)-z_{0}|>0$
\end_inset
y
@@ -371,7 +371,7 @@ Sean
\end_inset
, tenemos que
-\begin_inset Formula $\theta(t):=\theta_{0}(t)+\arg\frac{\gamma(t)-z}{\gamma(t)-z_{0}}$
+\begin_inset Formula $\theta(t)\coloneqq \theta_{0}(t)+\arg\frac{\gamma(t)-z}{\gamma(t)-z_{0}}$
\end_inset
es un argumento continuo de
@@ -499,7 +499,7 @@ Demostración:
\end_inset
, entonces
-\begin_inset Formula $\varphi(t):=\log|\gamma(t)-z|+i\theta(t)$
+\begin_inset Formula $\varphi(t)\coloneqq \log|\gamma(t)-z|+i\theta(t)$
\end_inset
es un logaritmo continuo de
@@ -525,7 +525,7 @@ Demostración:
es derivable.
Entonces
-\begin_inset Formula $\varphi_{k}:=\varphi|_{[t_{k-1},t_{k}]}$
+\begin_inset Formula $\varphi_{k}\coloneqq \varphi|_{[t_{k-1},t_{k}]}$
\end_inset
también lo es y
@@ -560,7 +560,7 @@ Una
cadena
\series default
es una expresión de la forma
-\begin_inset Formula $\Gamma:=m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}$
+\begin_inset Formula $\Gamma\coloneqq m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}$
\end_inset
donde los
@@ -581,7 +581,7 @@ soporte
\end_inset
a
-\begin_inset Formula $\Gamma^{*}:=\bigcup_{k}\gamma_{k}^{*}$
+\begin_inset Formula $\Gamma^{*}\coloneqq \bigcup_{k}\gamma_{k}^{*}$
\end_inset
y
@@ -593,16 +593,16 @@ longitud
\end_inset
a
-\begin_inset Formula $\ell(\Gamma):=\sum_{k}|m_{k}|\ell(\gamma_{k})$
+\begin_inset Formula $\ell(\Gamma)\coloneqq \sum_{k}|m_{k}|\ell(\gamma_{k})$
\end_inset
.
Si
-\begin_inset Formula $\Sigma:=n_{1}\sigma_{1}+\dots+n_{p}\sigma_{p}$
+\begin_inset Formula $\Sigma\coloneqq n_{1}\sigma_{1}+\dots+n_{p}\sigma_{p}$
\end_inset
es otra cadena, llamamos
-\begin_inset Formula $\Gamma+\Sigma:=m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}+k_{1}\sigma_{1}+\dots+k_{p}\sigma_{p}$
+\begin_inset Formula $\Gamma+\Sigma\coloneqq m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}+k_{1}\sigma_{1}+\dots+k_{p}\sigma_{p}$
\end_inset
.
@@ -647,7 +647,7 @@ ciclo
\end_inset
a
-\begin_inset Formula $\text{Ind}_{\Gamma}(z):=\sum_{k}m_{k}\text{Ind}_{\gamma_{k}}(z)$
+\begin_inset Formula $\text{Ind}_{\Gamma}(z)\coloneqq \sum_{k}m_{k}\text{Ind}_{\gamma_{k}}(z)$
\end_inset
.
@@ -806,7 +806,7 @@ es continua en
\end_inset
Como
-\begin_inset Formula $K:=\{\{z_{n}\}_{n}\cup\{a\}\}\times\Gamma^{*}$
+\begin_inset Formula $K\coloneqq \{\{z_{n}\}_{n}\cup\{a\}\}\times\Gamma^{*}$
\end_inset
es compacto por ser producto de compactos,
@@ -889,7 +889,7 @@ Si además, para
\end_inset
dada por
-\begin_inset Formula $F_{w}(z):=F(z,w)$
+\begin_inset Formula $F_{w}(z)\coloneqq F(z,w)$
\end_inset
es holomorfa en
@@ -1059,7 +1059,7 @@ Ahora bien, fijado
\end_inset
, sea
-\begin_inset Formula $F_{w}(z):=F(w,z)$
+\begin_inset Formula $F_{w}(z)\coloneqq F(w,z)$
\end_inset
, es claro que
@@ -1083,7 +1083,7 @@ Ahora bien, fijado
\begin_layout Standard
Sea
-\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
+\begin_inset Formula $\Omega_{0}\coloneqq \{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
\end_inset
, que es abierto por ser unión de componentes conexas de
@@ -1123,7 +1123,7 @@ status open
\end_inset
dada por
-\begin_inset Formula $F_{0}(z,w):=\frac{f(w)}{w-z}$
+\begin_inset Formula $F_{0}(z,w)\coloneqq \frac{f(w)}{w-z}$
\end_inset
.
@@ -1302,7 +1302,7 @@ forma general del teorema de Cauchy
\end_inset
, aplicando la fórmula integral de Cauchy a
-\begin_inset Formula $g(z):=(z-a)f(z)$
+\begin_inset Formula $g(z)\coloneqq (z-a)f(z)$
\end_inset
, como
@@ -1886,7 +1886,7 @@ status open
.
Sea
-\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$
+\begin_inset Formula $K\coloneqq \mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$
\end_inset
, que es cerrado por ser complementario de un abierto y acotado porque no
@@ -1934,15 +1934,15 @@ Sean
\end_inset
,
-\begin_inset Formula $m_{k}:=\text{Ind}_{\Gamma}(a_{k})$
+\begin_inset Formula $m_{k}\coloneqq \text{Ind}_{\Gamma}(a_{k})$
\end_inset
,
-\begin_inset Formula $\gamma_{k}:=C(a_{k},\rho)$
+\begin_inset Formula $\gamma_{k}\coloneqq C(a_{k},\rho)$
\end_inset
y
-\begin_inset Formula $\Sigma:=\sum_{k=1}^{q}m_{k}\gamma_{k}$
+\begin_inset Formula $\Sigma\coloneqq \sum_{k=1}^{q}m_{k}\gamma_{k}$
\end_inset
.