aboutsummaryrefslogtreecommitdiff
path: root/fvc
diff options
context:
space:
mode:
Diffstat (limited to 'fvc')
-rw-r--r--fvc/n2.lyx4
-rw-r--r--fvc/n3.lyx10
-rw-r--r--fvc/n4.lyx12
3 files changed, 13 insertions, 13 deletions
diff --git a/fvc/n2.lyx b/fvc/n2.lyx
index b18a007..61c71c9 100644
--- a/fvc/n2.lyx
+++ b/fvc/n2.lyx
@@ -91,7 +91,7 @@ Teorema de Cauchy-Goursat:
\end_inset
y
-\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c:\mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
+\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
\end_inset
, entonces
@@ -1583,7 +1583,7 @@ Sean
\end_inset
y
-\begin_inset Formula $H:=\{z\in\mathbb{C}:d(z,K)\leq\rho\}$
+\begin_inset Formula $H:=\{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$
\end_inset
, con lo que
diff --git a/fvc/n3.lyx b/fvc/n3.lyx
index 58662d2..a2494f8 100644
--- a/fvc/n3.lyx
+++ b/fvc/n3.lyx
@@ -87,7 +87,7 @@ Sean
\end_inset
y
-\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$
+\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
\end_inset
,
@@ -210,7 +210,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $A:=\{z\in\Omega:\forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
+\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
\end_inset
, pues
@@ -221,7 +221,7 @@ status open
Como
\begin_inset Formula
\[
-A=\bigcap_{k=0}^{\infty}\{z\in\Omega:f^{(k)}(z)=0\},
+A=\bigcap_{k=0}^{\infty}\{z\in\Omega\mid f^{(k)}(z)=0\},
\]
\end_inset
@@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas
\end_inset
no es idénticamente nula, entonces todo punto de
-\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$
+\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
\end_inset
es aislado y
@@ -377,7 +377,7 @@ cero
orden
\series default
-\begin_inset Formula $\min\{n\in\mathbb{N}:f^{(n)}(a)\neq0\}$
+\begin_inset Formula $\min\{n\in\mathbb{N}\mid f^{(n)}(a)\neq0\}$
\end_inset
.
diff --git a/fvc/n4.lyx b/fvc/n4.lyx
index c7ae304..cfd60f7 100644
--- a/fvc/n4.lyx
+++ b/fvc/n4.lyx
@@ -968,7 +968,7 @@ f'(z) & \text{si }z=w.
\end_inset
es continua en
-\begin_inset Formula $\{(z,w)\in\Omega\times\Omega:z\neq w\}$
+\begin_inset Formula $\{(z,w)\in\Omega\times\Omega\mid z\neq w\}$
\end_inset
.
@@ -1083,7 +1083,7 @@ Ahora bien, fijado
\begin_layout Standard
Sea
-\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$
+\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
\end_inset
, que es abierto por ser unión de componentes conexas de
@@ -1834,7 +1834,7 @@ Sean
\end_inset
, entonces
-\begin_inset Formula $\{a\in S:\text{Ind}_{\Gamma}(a)\neq0\}$
+\begin_inset Formula $\{a\in S\mid \text{Ind}_{\Gamma}(a)\neq0\}$
\end_inset
es finito y
@@ -1854,7 +1854,7 @@ Sean
Demostración:
\series default
Sea
-\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$
+\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
\end_inset
, que es abierto por ser unión de componentes conexas de
@@ -1886,7 +1886,7 @@ status open
.
Sea
-\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)\neq0\}$
+\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$
\end_inset
, que es cerrado por ser complementario de un abierto y acotado porque no
@@ -1896,7 +1896,7 @@ status open
, luego es compacto.
Si
-\begin_inset Formula $S\cap K=\{a\in S:\text{Ind}_{\Gamma}(z)\neq0\}$
+\begin_inset Formula $S\cap K=\{a\in S\mid \text{Ind}_{\Gamma}(z)\neq0\}$
\end_inset
no fuera finito, tendría un punto de acumulación que, por compacidad, debería