aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 21:12:22 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 21:12:22 +0100
commit214b20d1614b09cd5c18e111df0f0d392af2e721 (patch)
tree18e6ded17b7fe84129ebfe5149c9f77dd307d226
parent43e23cdd2ae85a634c4d5c8d921cc671738682bf (diff)
Cambios estéticos y de compatibilidad (ver mensaje)
* Cambiado globalmente el formato de los conjuntos por comprehensión de la notación con ":" a la más común con "|". * Cambiado el formato de "|" en los conjuntos definidos con \left\{ y \right\} para que la barra vertical sea tan grande como las llaves. * Cambiado grafo del tema 4 de AED I de formato SVG a raster. Antes de esto no compilaba porque ImageMagick tiene desactivada por seguridad la conversión que LyX necesita para representar imágenes SVG. Se mantiene la versión SVG en el repositorio por si fuera necesaria en el futuro. * Cambiadas imágenes de puertas lógicas del tema 3 de FC a su versión PDF. Antes se usaba la versión SVG, que causa los mismos problemas. * Cambiadas imágenes en los apuntes de FC para que se miren como figuras. * Marcadas algunas partes de BBDD como idioma inglés debido a fallos en LaTeX o algunos paquetes cuando el idioma no es inglés. No afecta a la presentación. * Añadidos saltos de línea donde hacía falta de los apuntes de ISO. * Corregida referencia en tema 1 AC: ga -> GyA.
-rw-r--r--aalg/n1.lyx4
-rw-r--r--aalg/n2.lyx2
-rw-r--r--aalg/n3.lyx10
-rw-r--r--aalg/n4.lyx6
-rw-r--r--ac/n1.lyx48
-rw-r--r--ac/n2.lyx14
-rw-r--r--ac/n3.lyx8
-rwxr-xr-xaec/n.pdfbin455610 -> 0 bytes
-rw-r--r--aed1/graph.epsbin0 -> 10750 bytes
-rw-r--r--aed1/n2.lyx4
-rw-r--r--aed1/n4.lyx29
-rw-r--r--aed2/n.pdfbin588738 -> 0 bytes
-rw-r--r--af/n1.lyx8
-rw-r--r--algl/n1.lyx10
-rw-r--r--algl/n4.lyx2
-rw-r--r--algl/n5.lyx2
-rw-r--r--anm/n1.lyx26
-rw-r--r--anm/n2.lyx2
-rw-r--r--anm/n3.lyx2
-rw-r--r--anm/na.lyx2
-rw-r--r--aoc/n3.lyx2
-rwxr-xr-xar/n.pdfbin265682 -> 0 bytes
-rw-r--r--bd/n5.lyx21
-rw-r--r--bd/n6.lyx14
-rw-r--r--bd/n7.lyx4
-rw-r--r--cc/n1.lyx2
-rw-r--r--cc/n3.lyx10
-rwxr-xr-xcn/n.pdfbin326312 -> 0 bytes
-rw-r--r--cyn/n1.lyx12
-rw-r--r--cyn/n2.lyx10
-rw-r--r--cyn/n4.lyx2
-rw-r--r--cyn/n5.lyx2
-rw-r--r--cyn/n7.lyx10
-rw-r--r--cyn/n8.lyx2
-rw-r--r--ealg/n1.lyx12
-rw-r--r--ealg/n2.lyx2
-rw-r--r--ealg/n4.lyx8
-rw-r--r--ealg/n5.lyx2
-rw-r--r--ealg/n6.lyx6
-rw-r--r--ealg/n7.lyx8
-rw-r--r--edo/n.pdfbin531210 -> 0 bytes
-rw-r--r--epe/n.pdfbin509398 -> 0 bytes
-rw-r--r--fc/AND_ANSI_Labelled.svgbin6374 -> 4971 bytes
-rw-r--r--fc/NAND_ANSI_Labelled.svgbin6769 -> 5038 bytes
-rw-r--r--fc/NOR_ANSI_Labelled.svgbin6895 -> 5125 bytes
-rw-r--r--fc/Not-gate-en.svgbin3508 -> 8263 bytes
-rw-r--r--fc/OR_ANSI_Labelled.svgbin6461 -> 5064 bytes
-rw-r--r--fc/XOR_ANSI.svgbin5376 -> 4961 bytes
-rw-r--r--fc/Xnor-gate-en.svgbin4676 -> 9716 bytes
-rw-r--r--fc/n1.lyx51
-rw-r--r--fc/n3.lyx133
-rw-r--r--fli/n6.lyx8
-rw-r--r--fuvr1/n1.lyx30
-rw-r--r--fuvr1/n2.lyx20
-rw-r--r--fuvr1/n3.lyx2
-rw-r--r--fuvr2/n1.lyx2
-rw-r--r--fuvr2/n2.lyx2
-rw-r--r--fuvr2/n3.lyx2
-rw-r--r--fvc/n2.lyx4
-rw-r--r--fvc/n3.lyx10
-rw-r--r--fvc/n4.lyx12
-rw-r--r--fvv1/n1.lyx4
-rw-r--r--fvv1/n2.lyx2
-rw-r--r--fvv1/n3.lyx2
-rw-r--r--fvv1/n4.lyx4
-rw-r--r--fvv2/n1.lyx10
-rw-r--r--fvv2/n2.lyx6
-rw-r--r--fvv2/n3.lyx16
-rw-r--r--fvv2/n4.lyx2
-rw-r--r--fvv3/n.pdfbin426980 -> 0 bytes
-rw-r--r--ga/n1.lyx18
-rw-r--r--ga/n2.lyx4
-rw-r--r--ga/n3.lyx12
-rw-r--r--ga/n4.lyx20
-rw-r--r--ga/n5.lyx6
-rw-r--r--ga/n6.lyx2
-rw-r--r--gae/n2.lyx6
-rw-r--r--gcs/n1.lyx4
-rw-r--r--gcs/n2.lyx6
-rw-r--r--gcs/n3.lyx8
-rw-r--r--ggs/n2.lyx8
-rw-r--r--ggs/n3.lyx10
-rw-r--r--ggs/n4.lyx4
-rw-r--r--ggs/n5.lyx2
-rw-r--r--ggs/n7.lyx2
-rw-r--r--graf/n1.lyx10
-rw-r--r--graf/n2.lyx2
-rw-r--r--graf/n4.lyx4
-rw-r--r--graf/n6.lyx28
-rw-r--r--graf/n7.lyx6
-rw-r--r--iso/n2.lyx94
-rw-r--r--mc/n1.lyx4
-rw-r--r--mc/n2.lyx4
-rw-r--r--mc/n4.lyx20
-rw-r--r--mc/n5.lyx8
-rw-r--r--mc/n7.lyx12
-rw-r--r--mc/n8.lyx16
-rw-r--r--mne/n2.lyx2
-rw-r--r--mne/n5.lyx6
-rw-r--r--pcd/n.pdfbin406994 -> 0 bytes
-rw-r--r--pds/n3.lyx2
-rw-r--r--rc/n.pdfbin489661 -> 0 bytes
-rw-r--r--si/n2.lyx4
-rw-r--r--si/n3.lyx4
-rw-r--r--si/n5.lyx2
-rw-r--r--si/n7.lyx4
-rw-r--r--tem/n1.lyx8
-rw-r--r--tem/n2.lyx10
-rw-r--r--tem/n3.lyx2
-rw-r--r--tem/n4.lyx2
-rw-r--r--ts/n1.lyx26
-rw-r--r--ts/n2.lyx16
-rw-r--r--ts/n3.lyx22
-rw-r--r--ts/n4.lyx2
-rw-r--r--ts/n6.lyx34
115 files changed, 694 insertions, 402 deletions
diff --git a/aalg/n1.lyx b/aalg/n1.lyx
index 520ce4b..a783d88 100644
--- a/aalg/n1.lyx
+++ b/aalg/n1.lyx
@@ -1235,7 +1235,7 @@ Demostración:
en común, los tres puntos estarían alineados.
Así, podemos tomar
-\begin_inset Formula $\{O\}:=m\cap m'$
+\begin_inset Formula $\{O\}\mid =m\cap m'$
\end_inset
y entonces
@@ -2296,7 +2296,7 @@ hemisferio norte
\end_inset
de la hipérbola (
-\begin_inset Formula $\{(x,y)\in{\cal H}:y\geq0\}$
+\begin_inset Formula $\{(x,y)\in{\cal H}\mid y\geq0\}$
\end_inset
), dado por
diff --git a/aalg/n2.lyx b/aalg/n2.lyx
index 94fb772..d6c0241 100644
--- a/aalg/n2.lyx
+++ b/aalg/n2.lyx
@@ -338,7 +338,7 @@ Los vectores propios de
.
Así,
-\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$
+\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$
\end_inset
es el
diff --git a/aalg/n3.lyx b/aalg/n3.lyx
index d0e0932..a6df369 100644
--- a/aalg/n3.lyx
+++ b/aalg/n3.lyx
@@ -1883,7 +1883,7 @@ Sean
\end_inset
y
-\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):f(x,y)=0\}$
+\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid f(x,y)=0\}$
\end_inset
, llamamos
@@ -1899,7 +1899,7 @@ completación proyectiva
\end_inset
a
-\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K}):f^{*}(x,y,z)=0\}$
+\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K})\mid f^{*}(x,y,z)=0\}$
\end_inset
, y para
@@ -1915,7 +1915,7 @@ parte afín
\end_inset
es
-\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):<(x,y,1)>\in\hat{{\cal L}}\}$
+\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid <(x,y,1)>\in\hat{{\cal L}}\}$
\end_inset
.
@@ -1928,12 +1928,12 @@ parte afín
\end_inset
,
-\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y):F(x,y,1)=0\}=\{(x,y):F_{*}(x,y)=0\}$
+\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y)\mid F(x,y,1)=0\}=\{(x,y)\mid F_{*}(x,y)=0\}$
\end_inset
.
Entonces
-\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>:(F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>:F(x,y,0)=0\}$
+\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>\mid (F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>\mid F(x,y,0)=0\}$
\end_inset
, y si
diff --git a/aalg/n4.lyx b/aalg/n4.lyx
index 11a1a77..96b456a 100644
--- a/aalg/n4.lyx
+++ b/aalg/n4.lyx
@@ -827,7 +827,7 @@ subespacio ortogonal
\end_inset
al subespacio
-\begin_inset Formula $E^{\bot}:=\{v\in V:\forall e\in E,\langle v,e\rangle=0\}$
+\begin_inset Formula $E^{\bot}:=\{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$
\end_inset
.
@@ -3827,7 +3827,7 @@ cónica proyectiva
\end_inset
, o de formas cuadráticas no nulas de dimensión 3, bajo la relación
-\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$
+\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}\mid q'=\lambda q$
\end_inset
.
@@ -3975,7 +3975,7 @@ recta polar
\end_inset
a
-\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K}):[P]^{t}\overline{A}[X]=0\}$
+\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$
\end_inset
, y decimos que
diff --git a/ac/n1.lyx b/ac/n1.lyx
index 3cbfecf..c64daaf 100644
--- a/ac/n1.lyx
+++ b/ac/n1.lyx
@@ -799,7 +799,7 @@ status open
\backslash
-begin{reminder}{ga}
+begin{reminder}{GyA}
\end_layout
\end_inset
@@ -3379,7 +3379,7 @@ Dado un espacio topológico
\end_inset
,
-\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$
+\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$
\end_inset
es un subanillo de
@@ -3404,7 +3404,7 @@ Dado un espacio vectorial
\end_inset
,
-\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$
+\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$
\end_inset
es un subanillo de
@@ -3433,7 +3433,7 @@ Dado un anillo
\end_inset
,
-\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$
+\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$
\end_inset
es un subanillo de
@@ -3893,7 +3893,7 @@ ideal de
a
\begin_inset Formula
\[
-(S)\coloneqq\bigcap\{I\trianglelefteq A:S\subseteq I\}=\{a_{1}s_{1}+\dots+a_{n}s_{n}\}_{n\in\mathbb{N},a\in A^{n},s\in S^{n}},
+(S)\coloneqq\bigcap\{I\trianglelefteq A\mid S\subseteq I\}=\{a_{1}s_{1}+\dots+a_{n}s_{n}\}_{n\in\mathbb{N},a\in A^{n},s\in S^{n}},
\]
\end_inset
@@ -3912,7 +3912,7 @@ conjunto generador
.
En efecto,
-\begin_inset Formula $\bigcap\{I\trianglelefteq A:S\subseteq I\}$
+\begin_inset Formula $\bigcap\{I\trianglelefteq A\mid S\subseteq I\}$
\end_inset
es un ideal de
@@ -5609,7 +5609,7 @@ Dado un homomorfismo de anillos
, la extensión es una biyección
\begin_inset Formula
\[
-\{I\trianglelefteq A:\ker f\subseteq I\}\to\{J\trianglelefteq\text{Im}f\},
+\{I\trianglelefteq A\mid\ker f\subseteq I\}\to\{J\trianglelefteq\text{Im}f\},
\]
\end_inset
@@ -5715,7 +5715,7 @@ Si
es la proyección canónica,
\begin_inset Formula
\[
-\rho:\{J\trianglelefteq A:I\subseteq J\}\to\{K\trianglelefteq A/I\}
+\rho:\{J\trianglelefteq A\mid I\subseteq J\}\to\{K\trianglelefteq A/I\}
\]
\end_inset
@@ -5821,7 +5821,7 @@ Hay tantos ideales de
\end_inset
y
-\begin_inset Formula $\{I\trianglelefteq\mathbb{Z}:(n)\subseteq I\}$
+\begin_inset Formula $\{I\trianglelefteq\mathbb{Z}\mid(n)\subseteq I\}$
\end_inset
, pero
@@ -6810,11 +6810,11 @@ espectro maximal
\end_inset
, la biyección
-\begin_inset Formula $\{J\in{\cal L}(A):I\subseteq J\}\to{\cal L}(A/I)$
+\begin_inset Formula $\{J\in{\cal L}(A)\mid I\subseteq J\}\to{\cal L}(A/I)$
\end_inset
del teorema de la correspondencia se restringe a una biyección
-\begin_inset Formula $\{J\in\text{MaxSpec}(A):I\subseteq J\}\to\text{MaxSpec}(A/I)$
+\begin_inset Formula $\{J\in\text{MaxSpec}(A)\mid I\subseteq J\}\to\text{MaxSpec}(A/I)$
\end_inset
.
@@ -6911,7 +6911,7 @@ Si
Demostración:
\series default
Sea
-\begin_inset Formula $\Omega\coloneqq\{J\triangleleft A:I\subseteq J\}$
+\begin_inset Formula $\Omega\coloneqq\{J\triangleleft A\mid I\subseteq J\}$
\end_inset
,
@@ -7037,7 +7037,7 @@ radical de Jacobson
\end_inset
a
-\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)=\{a\in A:1+(a)\subseteq A^{*}\}$
+\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)=\{a\in A\mid1+(a)\subseteq A^{*}\}$
\end_inset
.
@@ -7543,11 +7543,11 @@ espectro primo
\end_inset
, la biyección
-\begin_inset Formula $\{J\in{\cal L}(A):I\subseteq J\}\to{\cal L}(A/I)$
+\begin_inset Formula $\{J\in{\cal L}(A)\mid I\subseteq J\}\to{\cal L}(A/I)$
\end_inset
se restringe a una biyección
-\begin_inset Formula $\{J\in\text{Spec}(A):I\subseteq J\}\to\text{Spec}(A/I)$
+\begin_inset Formula $\{J\in\text{Spec}(A)\mid I\subseteq J\}\to\text{Spec}(A/I)$
\end_inset
.
@@ -7992,7 +7992,7 @@ primo minimal sobre
Demostración:
\series default
Sea
-\begin_inset Formula $\Omega\coloneqq\{P\trianglelefteq_{\text{p}}A:I\subseteq P\subseteq Q\}$
+\begin_inset Formula $\Omega\coloneqq\{P\trianglelefteq_{\text{p}}A\mid I\subseteq P\subseteq Q\}$
\end_inset
,
@@ -8363,7 +8363,7 @@ Lema de Krull:
\end_layout
\begin_layout Enumerate
-\begin_inset Formula ${\cal L}_{I,S}\coloneqq\{J\trianglelefteq A:I\subseteq J,J\cap S=\emptyset\}$
+\begin_inset Formula ${\cal L}_{I,S}\coloneqq\{J\trianglelefteq A\mid I\subseteq J,J\cap S=\emptyset\}$
\end_inset
es un conjunto inductivo no vacío.
@@ -8490,7 +8490,7 @@ radical
a
\begin_inset Formula
\[
-\sqrt{I}\coloneqq\{x\in A:\exists n\in\mathbb{N}:x^{n}\in I\}=\bigcap\{J\trianglelefteq_{\text{r}}A:I\subseteq J\}=\bigcap\{J\trianglelefteq_{\text{p}}A:I\subseteq J\},
+\sqrt{I}\coloneqq\{x\in A\mid\exists n\in\mathbb{N}\mid x^{n}\in I\}=\bigcap\{J\trianglelefteq_{\text{r}}A\mid I\subseteq J\}=\bigcap\{J\trianglelefteq_{\text{p}}A\mid I\subseteq J\},
\]
\end_inset
@@ -8785,7 +8785,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
@@ -9338,11 +9338,11 @@ polinomios constantes
\end_inset
,
-\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$
+\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$
\end_inset
e
-\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$
+\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$
\end_inset
son ideales de
@@ -9366,7 +9366,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -9916,7 +9916,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid(X-a)^{k}\mid f\}$
\end_inset
.
@@ -10448,7 +10448,7 @@ Definimos
\end_inset
,
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y para
diff --git a/ac/n2.lyx b/ac/n2.lyx
index d1f9070..07960c8 100644
--- a/ac/n2.lyx
+++ b/ac/n2.lyx
@@ -771,7 +771,7 @@ Para
\end_inset
, los
-\begin_inset Formula $I_{n}\coloneqq\{a:\forall k>n,a_{k}=0\}$
+\begin_inset Formula $I_{n}\coloneqq\{a\mid \forall k>n,a_{k}=0\}$
\end_inset
cumplen
@@ -779,7 +779,7 @@ Para
\end_inset
y los
-\begin_inset Formula $J_{n}\coloneqq\{a:\forall k<n,a_{k}=0\}$
+\begin_inset Formula $J_{n}\coloneqq\{a\mid \forall k<n,a_{k}=0\}$
\end_inset
cumplen
@@ -1333,7 +1333,7 @@ Dados
\end_inset
, llamamos
-\begin_inset Formula $(I:S)=\{a\in A:aS\subseteq I\}$
+\begin_inset Formula $(I:S)=\{a\in A\mid aS\subseteq I\}$
\end_inset
.
@@ -1491,7 +1491,7 @@ anulador
\end_inset
a
-\begin_inset Formula $\text{ann}_{A}(X)\coloneqq(0:X)=\{a\in A:aX=0\}$
+\begin_inset Formula $\text{ann}_{A}(X)\coloneqq(0:X)=\{a\in A\mid aX=0\}$
\end_inset
, y entonces
@@ -1719,7 +1719,7 @@ Claramente
\end_layout
\begin_layout Standard
-\begin_inset Formula $(P:(a))=\{c\in A:c(a)=(ca)\subseteq P\}=\{c\in A:ac\in P\}$
+\begin_inset Formula $(P:(a))=\{c\in A\mid c(a)=(ca)\subseteq P\}=\{c\in A\mid ac\in P\}$
\end_inset
, y entonces
@@ -2218,7 +2218,7 @@ dimensión de Krull
es
\begin_inset Formula
\[
-\dim A\coloneqq\text{Kdim}A\coloneqq\sup\{n\in\mathbb{N}:\exists P_{0},\dots,P_{n}\trianglelefteq_{\text{p}}A:P_{0}\subsetneq\dots\subsetneq P_{n}\}\in\mathbb{N}\cup\{\infty\},
+\dim A\coloneqq\text{Kdim}A\coloneqq\sup\{n\in\mathbb{N}\mid \exists P_{0},\dots,P_{n}\trianglelefteq_{\text{p}}A:P_{0}\subsetneq\dots\subsetneq P_{n}\}\in\mathbb{N}\cup\{\infty\},
\]
\end_inset
@@ -2443,7 +2443,7 @@ Dado
.
Si no lo fuera,
-\begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A:KI\neq0\}\neq\emptyset$
+\begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A\mid KI\neq0\}\neq\emptyset$
\end_inset
, pues
diff --git a/ac/n3.lyx b/ac/n3.lyx
index 0293687..845df67 100644
--- a/ac/n3.lyx
+++ b/ac/n3.lyx
@@ -304,7 +304,7 @@ anulador
\end_inset
a
-\begin_inset Formula $\text{ann}_{M}(X)\coloneqq\{m\in M:Xm=0\}\leq_{A}M$
+\begin_inset Formula $\text{ann}_{M}(X)\coloneqq\{m\in M\mid Xm=0\}\leq_{A}M$
\end_inset
.
@@ -339,7 +339,7 @@ externa
)
\begin_inset Formula
\[
-\bigoplus_{i\in I}M_{i}\coloneqq\left\{ x\in\prod_{i\in I}M_{i}:\{i\in I:x_{i}\neq0\}\text{ finito}\right\} .
+\bigoplus_{i\in I}M_{i}\coloneqq\left\{ x\in\prod_{i\in I}M_{i}\;\middle|\;\{i\in I\mid x_{i}\neq0\}\text{ finito}\right\} .
\]
\end_inset
@@ -645,7 +645,7 @@ Si
\end_inset
,
-\begin_inset Formula $\{f\in A[X]:\text{gr}f\leq n\}$
+\begin_inset Formula $\{f\in A[X]\mid\text{gr}f\leq n\}$
\end_inset
es un submódulo de
@@ -1296,7 +1296,7 @@ Si
\end_inset
,
-\begin_inset Formula $_{A/I}\text{Mod}\equiv\{M\in_{A}\text{Mod}:IM=0\}$
+\begin_inset Formula $_{A/I}\text{Mod}\equiv\{M\in_{A}\text{Mod}\mid IM=0\}$
\end_inset
por la biyección
diff --git a/aec/n.pdf b/aec/n.pdf
deleted file mode 100755
index d5293be..0000000
--- a/aec/n.pdf
+++ /dev/null
Binary files differ
diff --git a/aed1/graph.eps b/aed1/graph.eps
new file mode 100644
index 0000000..79fafd8
--- /dev/null
+++ b/aed1/graph.eps
Binary files differ
diff --git a/aed1/n2.lyx b/aed1/n2.lyx
index 26201e5..22a657a 100644
--- a/aed1/n2.lyx
+++ b/aed1/n2.lyx
@@ -303,7 +303,7 @@ Diccionario[
(k,v,d)\overset{k\notin\text{Dom}(d)}{\mapsto}D\cup\{(k,v)\} & (k,d)\overset{k\in\text{Dom}(d)}{\mapsto}d(k)\\
\mathsf{}\\
\mathsf{Suprime}:T_{k}\times D\rightarrow D & \mathsf{Vacío}:\rightarrow D\\
-(k,d)\mapsto\{(a,b)\in d:a\neq k\} & \mapsto\emptyset
+(k,d)\mapsto\{(a,b)\in d\mid a\neq k\} & \mapsto\emptyset
\end{array}
\]
@@ -373,7 +373,7 @@ Abierta
cubetas
\series default
, que contienen los elementos
-\begin_inset Formula $\{e\in c:h(e)=k\}$
+\begin_inset Formula $\{e\in c\mid h(e)=k\}$
\end_inset
, siendo
diff --git a/aed1/n4.lyx b/aed1/n4.lyx
index db68fda..3e1e0aa 100644
--- a/aed1/n4.lyx
+++ b/aed1/n4.lyx
@@ -107,7 +107,7 @@ nodos
aristas
\series default
-\begin_inset Formula $E\subseteq\{(a,b)\in V\times V:a\neq b\}$
+\begin_inset Formula $E\subseteq\{(a,b)\in V\times V\mid a\neq b\}$
\end_inset
, mientras que uno
@@ -123,7 +123,7 @@ no dirigido
\end_inset
y
-\begin_inset Formula $E\subseteq\{x\in{\cal P}(V):|x|=2\}$
+\begin_inset Formula $E\subseteq\{x\in{\cal P}(V)\mid |x|=2\}$
\end_inset
.
@@ -136,7 +136,7 @@ bucles
\end_inset
para que el grafo sea dirigido o que
-\begin_inset Formula $E\subseteq\{x\in{\cal P}(V):|x|\in\{1,2\}\}$
+\begin_inset Formula $E\subseteq\{x\in{\cal P}(V)\mid |x|\in\{1,2\}\}$
\end_inset
para que sea no dirigido.
@@ -374,7 +374,7 @@ grado
\end_inset
es el número de arcos adyacentes a él (
-\begin_inset Formula $|\{X\in E:v\in X\}|$
+\begin_inset Formula $|\{X\in E\mid v\in X\}|$
\end_inset
), mientras que en uno dirigido
@@ -390,7 +390,7 @@ grado de entrada
\end_inset
como
-\begin_inset Formula $|\{(a,b)\in A:b=v\}|$
+\begin_inset Formula $|\{(a,b)\in A\mid b=v\}|$
\end_inset
y el
@@ -398,7 +398,7 @@ grado de entrada
grado de salida
\series default
como
-\begin_inset Formula $|\{(a,b)\in A:a=v\}|$
+\begin_inset Formula $|\{(a,b)\in A\mid a=v\}|$
\end_inset
.
@@ -419,7 +419,7 @@ Operaciones elementales:
((V,E),v)\mapsto(V\cup\{v\},E) & ((V,E),(a,b))\overset{a,b\in V}{\mapsto}(V,E\cup\{e\})\\
\\
\mathsf{EliminarNodo}:G\times{\cal U}\rightarrow G & \mathsf{EliminarArista}:G\times({\cal U}\times{\cal U})\rightarrow G\\
-((V,E),v)\mapsto(V\backslash\{e\},\{(a,b)\in E:a,b\neq v\}) & ((V,E),e)\mapsto(V,E\backslash\{e\})\\
+((V,E),v)\mapsto(V\backslash\{e\},\{(a,b)\in E\mid a,b\neq v\}) & ((V,E),e)\mapsto(V,E\backslash\{e\})\\
\\
\mathsf{ConsultarArista}:G\times({\cal U}\times{\cal U})\rightarrow B\\
((V,E),(a,b))\mapsto(a,b)\in A
@@ -456,8 +456,9 @@ status open
\begin_layout Plain Layout
\align center
-\begin_inset Graphics
- filename graph.svg
+\begin_inset External
+ template VectorGraphics
+ filename graph.eps
scale 60
\end_inset
@@ -508,7 +509,7 @@ En un ordenador podemos representar un grafo finito
\end_inset
o
-\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma:E\rightarrow X)$
+\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma\mid E\rightarrow X)$
\end_inset
mediante:
@@ -594,12 +595,12 @@ Listas de adyacencia
(representados como listas enlazadas en una lista contigua) de los que
-\begin_inset Formula $C_{i}=\{j:(i,j)\in E\}$
+\begin_inset Formula $C_{i}=\{j\mid(i,j)\in E\}$
\end_inset
.
Si el grafo es etiquetado,
-\begin_inset Formula $C_{i}=\{(j,\sigma(i,j)):(i,j)\in E\}$
+\begin_inset Formula $C_{i}=\{(j,\sigma(i,j))\mid(i,j)\in E\}$
\end_inset
.
@@ -617,7 +618,7 @@ Listas de adyacencia
\begin_layout Standard
En adelante, salvo que se indique lo contrario, suponemos un grafo
-\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma:E\rightarrow X)$
+\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma\mid E\rightarrow X)$
\end_inset
, y que las variables en pseudocódigo se inicializan con su valor por defecto.
@@ -2586,7 +2587,7 @@ grafo reducido
\end_inset
y
-\begin_inset Formula $E_{R}:=\{(A,B)\in V_{R}:\exists a\in A,b\in B:(a,b)\in E\}$
+\begin_inset Formula $E_{R}:=\{(A,B)\in V_{R}\mid \exists a\in A,b\in B:(a,b)\in E\}$
\end_inset
.
diff --git a/aed2/n.pdf b/aed2/n.pdf
deleted file mode 100644
index a7d382d..0000000
--- a/aed2/n.pdf
+++ /dev/null
Binary files differ
diff --git a/af/n1.lyx b/af/n1.lyx
index e557567..ee9193e 100644
--- a/af/n1.lyx
+++ b/af/n1.lyx
@@ -258,7 +258,7 @@ espacio normado
\end_inset
, y llamamos
-\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X:\Vert x\Vert\leq1\}$
+\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X\mid \Vert x\Vert\leq1\}$
\end_inset
y conjunto de
@@ -266,7 +266,7 @@ espacio normado
vectores unitarios
\series default
a
-\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X:\Vert x\Vert=1\}$
+\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X\mid \Vert x\Vert=1\}$
\end_inset
.
@@ -2655,7 +2655,7 @@ topología cociente
\end_inset
a
-\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$
+\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$
\end_inset
, donde
@@ -3615,7 +3615,7 @@ Por isomorfismo podemos suponer que el dominio es
\end_inset
,
-\begin_inset Formula $\sup_{x\in S_{\ell_{n}^{1}}}\Vert T(x)\Vert=\sup_{\{x\in\mathbb{K}^{n}:\sum_{i}x_{i}=1\}}\left\Vert \sum_{i}x_{i}a_{i}\right\Vert =\sup_{i=1}^{n}a_{i}<\infty$
+\begin_inset Formula $\sup_{x\in S_{\ell_{n}^{1}}}\Vert T(x)\Vert=\sup_{\{x\in\mathbb{K}^{n}\mid \sum_{i}x_{i}=1\}}\left\Vert \sum_{i}x_{i}a_{i}\right\Vert =\sup_{i=1}^{n}a_{i}<\infty$
\end_inset
.
diff --git a/algl/n1.lyx b/algl/n1.lyx
index 47d85c9..da5b457 100644
--- a/algl/n1.lyx
+++ b/algl/n1.lyx
@@ -242,7 +242,7 @@ unidad:
Inverso para el producto:
\series default
-\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a'':a\cdot a''=1$
+\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a''\mid a\cdot a''=1$
\end_inset
;
@@ -1062,7 +1062,7 @@ Si
\end_inset
, el conjunto
-\begin_inset Formula $\mathcal{F}(\mathcal{S},K)=\{f:\mathcal{S}\rightarrow K\}$
+\begin_inset Formula $\mathcal{F}(\mathcal{S},K)=\{f\mid \mathcal{S}\rightarrow K\}$
\end_inset
, formado por todas las aplicaciones de
@@ -1087,7 +1087,7 @@ Si
-espacio vectorial.
Con estas mismas operaciones, el conjunto
-\begin_inset Formula $\mathcal{C}([a,b],\mathbb{R})=\{f:[a,b]\rightarrow\mathbb{R}|f\text{ continua}\}$
+\begin_inset Formula $\mathcal{C}([a,b],\mathbb{R})=\{f\mid [a,b]\rightarrow\mathbb{R}|f\text{ continua}\}$
\end_inset
es un
@@ -1320,7 +1320,7 @@ Los subconjuntos
.
También lo es
-\begin_inset Formula $U_{a,b}=\{f\in\mathcal{C}([a,b],\mathbb{R}):f(a)=f(b)\}$
+\begin_inset Formula $U_{a,b}=\{f\in\mathcal{C}([a,b],\mathbb{R})\mid f(a)=f(b)\}$
\end_inset
respecto de
@@ -1738,7 +1738,7 @@ base canónica
\end_inset
y 0 en el resto, entonces
-\begin_inset Formula $\{A_{ij}:1\leq i\leq m,1\leq j\leq n\}$
+\begin_inset Formula $\{A_{ij}\mid 1\leq i\leq m,1\leq j\leq n\}$
\end_inset
es base de
diff --git a/algl/n4.lyx b/algl/n4.lyx
index cf26416..a0f5c5f 100644
--- a/algl/n4.lyx
+++ b/algl/n4.lyx
@@ -1095,7 +1095,7 @@ Llamamos
filas o columnas:
\begin_inset Formula
\[
-\chi_{r}=\{(i_{1},\dots,i_{r}):1\leq i_{1}<\dots<i_{r}\leq n\}
+\chi_{r}=\{(i_{1},\dots,i_{r})\mid 1\leq i_{1}<\dots<i_{r}\leq n\}
\]
\end_inset
diff --git a/algl/n5.lyx b/algl/n5.lyx
index bb844d5..963ebd6 100644
--- a/algl/n5.lyx
+++ b/algl/n5.lyx
@@ -526,7 +526,7 @@ Los vectores propios de
.
Así,
-\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$
+\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$
\end_inset
es el
diff --git a/anm/n1.lyx b/anm/n1.lyx
index 5e90765..b001a5b 100644
--- a/anm/n1.lyx
+++ b/anm/n1.lyx
@@ -1519,7 +1519,7 @@ Queremos ver que
.
Si
-\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V:v\bot E_{k-1}\}$
+\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V\mid v\bot E_{k-1}\}$
\end_inset
, basta ver que para todo subespacio
@@ -1860,7 +1860,7 @@ Sea
\begin_deeper
\begin_layout Standard
-\begin_inset Formula $\sup\{\Vert Ax\Vert:\Vert x\Vert=1\}=\sup\{\sum_{k}|Ax|_{k}:\sum_{k}|x_{k}|=1\}=\sup\{\sum_{k,i}|a_{ki}||x_{i}|:\sum_{i}|x_{i}|=1\}$
+\begin_inset Formula $\sup\{\Vert Ax\Vert\mid\Vert x\Vert=1\}=\sup\{\sum_{k}|Ax|_{k}\mid\sum_{k}|x_{k}|=1\}=\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}$
\end_inset
.
@@ -1889,7 +1889,7 @@ Sea
\end_inset
luego
-\begin_inset Formula $\sup\{\sum_{k,i}|a_{ki}||x_{i}|:\sum_{i}|x_{i}|=1\}=\max_{i}\sum_{k}|a_{ki}|$
+\begin_inset Formula $\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}=\max_{i}\sum_{k}|a_{ki}|$
\end_inset
.
@@ -1922,10 +1922,14 @@ luego
\begin_deeper
\begin_layout Standard
-\begin_inset Formula $\Vert A\Vert_{2}^{2}=\sup\left\{ \frac{\Vert Ax\Vert_{2}^{2}}{\Vert x\Vert_{2}^{2}}:\Vert x\Vert_{2}=1\right\} =\sup\left\{ \frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\frac{\langle A^{*}Ax,x\rangle}{\langle x,x\rangle}=R_{A^{*}A}(x):\Vert x\Vert_{2}=1\right\} $
+\begin_inset Formula
+\[
+\Vert A\Vert_{2}^{2}=\sup\left\{ \frac{\Vert Ax\Vert_{2}^{2}}{\Vert x\Vert_{2}^{2}}\;\middle|\;\Vert x\Vert_{2}=1\right\} =\sup\left\{ \frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\frac{\langle A^{*}Ax,x\rangle}{\langle x,x\rangle}=R_{A^{*}A}(x)\;\middle|\;\Vert x\Vert_{2}=1\right\} ,
+\]
+
\end_inset
-, pero si
+ pero si
\begin_inset Formula $\lambda_{1},\dots,\lambda_{m}\geq0$
\end_inset
@@ -1938,7 +1942,7 @@ luego
\end_inset
son los subespacios propios asociados,
-\begin_inset Formula $\rho(A^{*}A)=\max\{\lambda_{1},\dots,\lambda_{m}\}=\max_{k=1}^{m}\max\{R_{A^{*}A}(v):v\in E_{k}\setminus\{0\}\}=\max\{R_{A^{*}A}(v):v\neq0\}$
+\begin_inset Formula $\rho(A^{*}A)=\max\{\lambda_{1},\dots,\lambda_{m}\}=\max_{k=1}^{m}\max\{R_{A^{*}A}(v)\mid v\in E_{k}\setminus\{0\}\}=\max\{R_{A^{*}A}(v)\mid v\neq0\}$
\end_inset
, y como
@@ -1950,7 +1954,7 @@ R_{A^{*}A}(v)=\frac{\langle Av,v\rangle}{\langle v,v\rangle}=\left\langle A\frac
\end_inset
queda
-\begin_inset Formula $\rho(A^{*}A)=\max\{R_{A^{*}A}(v):v\neq0\}=\max\{R_{A^{*}A}(v):\Vert v\Vert_{2}=1\}=\Vert A\Vert_{2}^{2}$
+\begin_inset Formula $\rho(A^{*}A)=\max\{R_{A^{*}A}(v)\mid v\neq0\}=\max\{R_{A^{*}A}(v)\mid\Vert v\Vert_{2}=1\}=\Vert A\Vert_{2}^{2}$
\end_inset
.
@@ -1968,8 +1972,8 @@ queda
\begin_layout Standard
\begin_inset Formula
\begin{align*}
-\Vert A\Vert_{\infty} & =\sup\{\Vert Ax\Vert_{\infty}:\Vert x\Vert_{\infty}=1\}=\sup\{\max_{k}|Ax|_{k}:\max_{k}|x_{k}|=1\}=\\
- & =\sup\left\{ \max_{k}\left|\sum_{i}a_{ki}x_{i}\right|:\max_{i}|x_{i}|=1\right\} =\max_{k}\sup\left\{ \left|\sum_{i}a_{ki}x_{i}\right|:\max_{i}|x_{i}|=1\right\} .
+\Vert A\Vert_{\infty} & =\sup\{\Vert Ax\Vert_{\infty}\mid\Vert x\Vert_{\infty}=1\}=\sup\{\max_{k}|Ax|_{k}\mid\max_{k}|x_{k}|=1\}=\\
+ & =\sup\left\{ \max_{k}\left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} =\max_{k}\sup\left\{ \left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} .
\end{align*}
\end_inset
@@ -1995,7 +1999,7 @@ queda
\end_inset
, con lo que
-\begin_inset Formula $\sup\{|\sum_{i}a_{ki}x_{i}|:\max_{i}|x_{i}|=1\}=\left|\sum_{i}|a_{ki}|\right|=\sum_{i}|a_{ki}|$
+\begin_inset Formula $\sup\{|\sum_{i}a_{ki}x_{i}|\mid\max_{i}|x_{i}|=1\}=\left|\sum_{i}|a_{ki}|\right|=\sum_{i}|a_{ki}|$
\end_inset
, luego
@@ -2211,7 +2215,7 @@ La diagonal no cambia, la matriz sigue siendo triangular superior y, para
\end_deeper
\begin_layout Standard
De aquí que
-\begin_inset Formula $\rho(A)=\inf\{\Vert A\Vert:\Vert\cdot\Vert\text{ es una norma matricial en }{\cal M}_{n}(\mathbb{K})\}$
+\begin_inset Formula $\rho(A)=\inf\{\Vert A\Vert\mid\Vert\cdot\Vert\text{ es una norma matricial en }{\cal M}_{n}(\mathbb{K})\}$
\end_inset
.
diff --git a/anm/n2.lyx b/anm/n2.lyx
index 7bfe502..df93e7b 100644
--- a/anm/n2.lyx
+++ b/anm/n2.lyx
@@ -2722,7 +2722,7 @@ Si
Demostración:
\series default
Sea
-\begin_inset Formula $K:=\{g\in G:\Vert f-g\Vert\leq\Vert f\Vert\}$
+\begin_inset Formula $K:=\{g\in G\mid \Vert f-g\Vert\leq\Vert f\Vert\}$
\end_inset
,
diff --git a/anm/n3.lyx b/anm/n3.lyx
index 0f1f3d2..518b2a3 100644
--- a/anm/n3.lyx
+++ b/anm/n3.lyx
@@ -907,7 +907,7 @@ Demostración:
.
En dimensión finita,
-\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}:\Vert v\Vert_{A}=1\}$
+\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid \Vert v\Vert_{A}=1\}$
\end_inset
.
diff --git a/anm/na.lyx b/anm/na.lyx
index f60a92d..d0f6418 100644
--- a/anm/na.lyx
+++ b/anm/na.lyx
@@ -1769,7 +1769,7 @@ A
\emph default
es vector, devuelve una matriz diagonal con elementos del vector en la
diagonal
-\begin_inset Formula $\{(i,j):i+k=j\}$
+\begin_inset Formula $\{(i,j)\mid i+k=j\}$
\end_inset
, y de lo contrario devuelve un vector con los elementos de dicha diagonal
diff --git a/aoc/n3.lyx b/aoc/n3.lyx
index 940873f..278feb8 100644
--- a/aoc/n3.lyx
+++ b/aoc/n3.lyx
@@ -1722,7 +1722,7 @@ nodos
hiperarcos
\series default
-\begin_inset Formula $H\subseteq\{(A,B)\in{\cal P}(V)\times{\cal P}(V):A,B\neq\emptyset\}$
+\begin_inset Formula $H\subseteq\{(A,B)\in{\cal P}(V)\times{\cal P}(V)\mid A,B\neq\emptyset\}$
\end_inset
.
diff --git a/ar/n.pdf b/ar/n.pdf
deleted file mode 100755
index ea5d2a3..0000000
--- a/ar/n.pdf
+++ /dev/null
Binary files differ
diff --git a/bd/n5.lyx b/bd/n5.lyx
index b225022..ba71168 100644
--- a/bd/n5.lyx
+++ b/bd/n5.lyx
@@ -234,12 +234,16 @@ Claves Ajenas
\family sans
(lista numerada de
+\lang english
+
\begin_inset Quotes cld
\end_inset
(
\emph on
-atributo
+a
+\lang spanish
+tributo
\emph default
, ...) Referencia_a
\emph on
@@ -249,7 +253,9 @@ NOMBRE_TABLA
\emph on
atributo_clave
\emph default
-, ...)
+, ...
+\lang english
+)
\begin_inset Quotes crd
\end_inset
@@ -269,18 +275,23 @@ Derivado
\family sans
(lista numerada de
+\lang english
+
\begin_inset Quotes cld
\end_inset
\emph on
-atributo
+a
+\lang spanish
+tributo
\emph default
=
\emph on
-fórmula
+fórmul
\emph default
-
+\lang english
+a
\begin_inset Quotes crd
\end_inset
diff --git a/bd/n6.lyx b/bd/n6.lyx
index ced2c05..29cc82f 100644
--- a/bd/n6.lyx
+++ b/bd/n6.lyx
@@ -4639,7 +4639,7 @@ condición
\end_inset
es una condición,
-\begin_inset Formula $\sigma_{C}(R):=(\{r\in R:C(r)\},T,N)$
+\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$
\end_inset
, donde
@@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa
Reunión natural
\series default
: Sea
-\begin_inset Formula $\{j_{1},\dots,j_{p}\}:=\{j:M_{j}\notin\{N_{i}\}\}$
+\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$
\end_inset
, si para
@@ -4805,7 +4805,7 @@ Reunión natural
, entonces
\begin_inset Formula
\[
-R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}}):r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M).
+R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M).
\]
\end_inset
@@ -4836,7 +4836,7 @@ reunión externa izquierda
\end_inset
como
-\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R:\nexists s\in S:C(r,s)\}\times N_{m})$
+\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$
\end_inset
, la
@@ -4844,7 +4844,7 @@ reunión externa izquierda
reunión externa derecha
\series default
como
-\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S:\nexists r\in R:C(r,s)\})$
+\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$
\end_inset
y la
@@ -4870,7 +4870,7 @@ División
, entonces
\begin_inset Formula
\[
-R\div S:=(\{r:\forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})).
+R\div S:=(\{r\mid \forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})).
\]
\end_inset
@@ -5220,7 +5220,7 @@ segura
\end_inset
se refiere al conjunto
-\begin_inset Formula $\{T:t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$
+\begin_inset Formula $\{T\mid t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$
\end_inset
.
diff --git a/bd/n7.lyx b/bd/n7.lyx
index ca42d0c..8f29a15 100644
--- a/bd/n7.lyx
+++ b/bd/n7.lyx
@@ -917,6 +917,8 @@ sideways false
status open
\begin_layout Plain Layout
+
+\lang english
\begin_inset ERT
status open
@@ -1092,6 +1094,8 @@ in C$}{rehacer $e$}
\end_inset
+\lang spanish
+
\begin_inset Caption Standard
\begin_layout Plain Layout
diff --git a/cc/n1.lyx b/cc/n1.lyx
index 0d3ecb2..ee9fa3c 100644
--- a/cc/n1.lyx
+++ b/cc/n1.lyx
@@ -901,7 +901,7 @@ Una
forma sentencial
\series default
es un elemento de
-\begin_inset Formula $D(G):=\{\alpha\in(V_{N}\cup V_{T})^{*}:S\Rightarrow^{*}\alpha\}$
+\begin_inset Formula $D(G):=\{\alpha\in(V_{N}\cup V_{T})^{*}\mid S\Rightarrow^{*}\alpha\}$
\end_inset
, y una
diff --git a/cc/n3.lyx b/cc/n3.lyx
index 6321080..d1b4fd9 100644
--- a/cc/n3.lyx
+++ b/cc/n3.lyx
@@ -742,7 +742,7 @@ Dada una GLC
como
\begin_inset Formula
\[
-\mathsf{PRIMERO}(\alpha):=\{a\in V_{T}:\exists\beta:\alpha\Rightarrow^{*}a\beta\}\cup\{\lambda:\alpha\Rightarrow^{*}\lambda\}.
+\mathsf{PRIMERO}(\alpha):=\{a\in V_{T}\mid \exists\beta:\alpha\Rightarrow^{*}a\beta\}\cup\{\lambda\mid \alpha\Rightarrow^{*}\lambda\}.
\]
\end_inset
@@ -986,7 +986,7 @@ noprefix "false"
\begin_inset Formula
\begin{multline*}
\mathsf{PRIMERO}(X_{1}\cdots X_{n})=\\
-=\bigcup_{i=1}^{\min(\{i:X_{1}\cdots X_{i}\nRightarrow^{*}\lambda\}\cup\{n\})}(\sigma(X_{i})\setminus\{\lambda\})\cup\{\lambda:X_{1}\cdots X_{n}\Rightarrow^{*}\lambda\}.
+=\bigcup_{i=1}^{\min(\{i\mid X_{1}\cdots X_{i}\nRightarrow^{*}\lambda\}\cup\{n\})}(\sigma(X_{i})\setminus\{\lambda\})\cup\{\lambda\mid X_{1}\cdots X_{n}\Rightarrow^{*}\lambda\}.
\end{multline*}
\end_inset
@@ -1250,7 +1250,7 @@ Definimos
como
\begin_inset Formula
\[
-\mathsf{SIGUIENTE}(A):=\{a\in V_{T}:\exists\alpha,\beta:S\Rightarrow^{+}\alpha Aa\beta\}\cup\{\$:\exists\alpha:S\Rightarrow^{*}\alpha A\},
+\mathsf{SIGUIENTE}(A):=\{a\in V_{T}\mid \exists\alpha,\beta:S\Rightarrow^{+}\alpha Aa\beta\}\cup\{\$\mid \exists\alpha\mid S\Rightarrow^{*}\alpha A\},
\]
\end_inset
@@ -3251,7 +3251,7 @@ Si, para
\end_inset
,
-\begin_inset Formula $\rho(I):=\{R:\exists a\in V_{T}:[R,a]\in I\}$
+\begin_inset Formula $\rho(I):=\{R\mid \exists a\in V_{T}\mid [R,a]\in I\}$
\end_inset
, para
@@ -5179,7 +5179,7 @@ tabla de análisis
\end_inset
dada por
-\begin_inset Formula $M(A,a):=\{A\to\alpha\in P:a\in\mathsf{Predict}(A\to\alpha)\}$
+\begin_inset Formula $M(A,a):=\{A\to\alpha\in P\mid a\in\mathsf{Predict}(A\to\alpha)\}$
\end_inset
, que a cada no terminal a derivar y terminal siguiente en la entrada le
diff --git a/cn/n.pdf b/cn/n.pdf
deleted file mode 100755
index 6264062..0000000
--- a/cn/n.pdf
+++ /dev/null
Binary files differ
diff --git a/cyn/n1.lyx b/cyn/n1.lyx
index 21cc0c8..d1f538e 100644
--- a/cyn/n1.lyx
+++ b/cyn/n1.lyx
@@ -608,11 +608,11 @@ Una familia de conjuntos es una colección
Unión arbitraria:
\series default
-\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}:x\in A\}$
+\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}\mid x\in A\}$
\end_inset
;
-\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I:x\in A_{i}\}$
+\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I\mid x\in A_{i}\}$
\end_inset
@@ -624,11 +624,11 @@ Unión arbitraria:
Intersección arbitraria:
\series default
-\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}:x\in A\}$
+\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}\mid x\in A\}$
\end_inset
;
-\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I:x\in A_{i}\}$
+\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I\mid x\in A_{i}\}$
\end_inset
@@ -888,7 +888,7 @@ Conjunto final:
Dominio:
\series default
-\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B:(a,b)\in R\}$
+\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B\mid (a,b)\in R\}$
\end_inset
.
@@ -900,7 +900,7 @@ Dominio:
Imagen:
\series default
-\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A:(a,b)\in R\}$
+\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A\mid (a,b)\in R\}$
\end_inset
.
diff --git a/cyn/n2.lyx b/cyn/n2.lyx
index 386c747..bc13575 100644
--- a/cyn/n2.lyx
+++ b/cyn/n2.lyx
@@ -121,7 +121,7 @@ aplicación
\end_inset
, de modo que
-\begin_inset Formula $f=\{(n,n^{2}):n\in\mathbb{N}\}$
+\begin_inset Formula $f=\{(n,n^{2})\mid n\in\mathbb{N}\}$
\end_inset
.
@@ -221,7 +221,7 @@ imagen directa
\end_inset
:
-\begin_inset Formula $\text{Im}f=f(A)=\{b\in B:\exists a:f(a)=b\}\subseteq B$
+\begin_inset Formula $\text{Im}f=f(A)=\{b\in B\mid\exists a\mid f(a)=b\}\subseteq B$
\end_inset
.
@@ -1359,7 +1359,7 @@ producto directo
como el conjunto
\begin_inset Formula
\[
-\prod_{i\in I}A_{i}=\left\{ f:I\rightarrow\cup_{i\in I}:f(i)\in A_{i}\forall i\in I\right\}
+\prod_{i\in I}A_{i}=\left\{ f\mid I\rightarrow\bigcup_{i\in I}\;\middle|\;f(i)\in A_{i}\forall i\in I\right\}
\]
\end_inset
@@ -1383,7 +1383,7 @@ Si
es finito y se escribe como una lista, podemos escribir el conjunto como
-\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n}):x_{i}\in A_{i},i=1,\dots,n\}$
+\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n})\mid x_{i}\in A_{i},i=1,\dots,n\}$
\end_inset
.
@@ -1420,7 +1420,7 @@ Sean
\end_inset
y un conjunto de biyecciones
-\begin_inset Formula $\{f_{i}:A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$
+\begin_inset Formula $\{f_{i}\mid A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$
\end_inset
, entonces existe una biyección
diff --git a/cyn/n4.lyx b/cyn/n4.lyx
index 50a4550..52b35f2 100644
--- a/cyn/n4.lyx
+++ b/cyn/n4.lyx
@@ -125,7 +125,7 @@ Sea
\end_inset
, su clase de equivalencia es
-\begin_inset Formula $[a]=\{b\in A:a\sim b\}$
+\begin_inset Formula $[a]=\{b\in A\mid a\sim b\}$
\end_inset
.
diff --git a/cyn/n5.lyx b/cyn/n5.lyx
index 0315b5a..9264de2 100644
--- a/cyn/n5.lyx
+++ b/cyn/n5.lyx
@@ -2100,7 +2100,7 @@ raíz
Así, todo número complejo tiene
\begin_inset Formula
\[
-\phi(n)=|\{m\in\{1,\dots,n-1\}:\text{mcd}(m,n)=1\}|
+\phi(n)=|\{m\in\{1,\dots,n-1\}\mid \text{mcd}(m,n)=1\}|
\]
\end_inset
diff --git a/cyn/n7.lyx b/cyn/n7.lyx
index 102ac10..525fc3d 100644
--- a/cyn/n7.lyx
+++ b/cyn/n7.lyx
@@ -201,7 +201,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}:x=a-bn\}\subseteq\mathbb{N}$
+\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}\mid x=a-bn\}\subseteq\mathbb{N}$
\end_inset
.
@@ -512,7 +512,7 @@ Dados
máximo común divisor
\series default
es
-\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}:d|a\land d|b\}$
+\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}\mid d|a\land d|b\}$
\end_inset
(excepción:
@@ -792,7 +792,7 @@ El máximo común divisor de
\end_inset
es
-\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}:\forall i,d|a_{i}\}$
+\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}\mid \forall i,d|a_{i}\}$
\end_inset
.
@@ -1071,7 +1071,7 @@ Dados
mínimo común múltiplo
\series default
es
-\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}:a|m\land b|m\}$
+\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}\mid a|m\land b|m\}$
\end_inset
.
@@ -1215,7 +1215,7 @@ El mínimo común múltiplo de
\end_inset
es
-\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}:\forall i,a_{i}|m\}$
+\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}\mid \forall i,a_{i}|m\}$
\end_inset
.
diff --git a/cyn/n8.lyx b/cyn/n8.lyx
index 1249714..b4589b3 100644
--- a/cyn/n8.lyx
+++ b/cyn/n8.lyx
@@ -453,7 +453,7 @@ divisor
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$
+\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}\mid A=\mu B$
\end_inset
.
diff --git a/ealg/n1.lyx b/ealg/n1.lyx
index 7068e05..a5d022d 100644
--- a/ealg/n1.lyx
+++ b/ealg/n1.lyx
@@ -223,7 +223,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -831,7 +831,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
@@ -968,7 +968,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
\end_inset
.
@@ -1875,7 +1875,7 @@ teorema
\end_inset
],
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y [...] si
@@ -3967,11 +3967,11 @@ Queremos ver que, para
.
Con esto, sean
-\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}:a_{i}\neq0\}$
+\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}\mid a_{i}\neq0\}$
\end_inset
,
-\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}:b_{j}\neq0\}$
+\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}\mid b_{j}\neq0\}$
\end_inset
,
diff --git a/ealg/n2.lyx b/ealg/n2.lyx
index a006108..cbcd97d 100644
--- a/ealg/n2.lyx
+++ b/ealg/n2.lyx
@@ -4611,7 +4611,7 @@ clausura algebraica
es
\begin_inset Formula
\[
-\overline{K}_{L}:=\{\alpha\in L:\alpha\text{ es algebraico sobre }K\}.
+\overline{K}_{L}:=\{\alpha\in L\mid \alpha\text{ es algebraico sobre }K\}.
\]
\end_inset
diff --git a/ealg/n4.lyx b/ealg/n4.lyx
index e9f8c50..4a46a08 100644
--- a/ealg/n4.lyx
+++ b/ealg/n4.lyx
@@ -1089,7 +1089,7 @@ grupo de Galois
\end_inset
lleva raíces a raíces y por tanto
-\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}:\{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$
+\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}\mid \{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$
\end_inset
es inyectiva por serlo
@@ -1491,7 +1491,7 @@ teorema
\end_inset
,
-\begin_inset Formula $K(\{\alpha\in\overline{K}:\exists f\in{\cal P}:f(\alpha)=0\})$
+\begin_inset Formula $K(\{\alpha\in\overline{K}\mid \exists f\in{\cal P}:f(\alpha)=0\})$
\end_inset
, por lo que existe un cuerpo de descomposición de
@@ -2010,7 +2010,7 @@ Para cada
\end_inset
elementos y viene dado por
-\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$
+\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$
\end_inset
.
@@ -2019,7 +2019,7 @@ Para cada
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$
+\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$
\end_inset
el conjunto de raíces de
diff --git a/ealg/n5.lyx b/ealg/n5.lyx
index a3eaed8..18c97fd 100644
--- a/ealg/n5.lyx
+++ b/ealg/n5.lyx
@@ -112,7 +112,7 @@ de uno
, y llamamos
\begin_inset Formula
\[
-{\cal U}_{n}(K):=\{\xi\in K:\xi^{n}=1\}=\{\xi\in K:o_{K^{*}}(\xi)\mid n\}.
+{\cal U}_{n}(K):=\{\xi\in K\mid \xi^{n}=1\}=\{\xi\in K\mid o_{K^{*}}(\xi)\mid n\}.
\]
\end_inset
diff --git a/ealg/n6.lyx b/ealg/n6.lyx
index 343a1ac..fd441a7 100644
--- a/ealg/n6.lyx
+++ b/ealg/n6.lyx
@@ -243,7 +243,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $R:=\{\alpha_{1}:=\alpha,\dots,\alpha_{m}\}$
+\begin_inset Formula $R:=\{\alpha_{1}\mid =\alpha,\dots,\alpha_{m}\}$
\end_inset
el conjunto de las raíces de
@@ -354,7 +354,7 @@ teorema
\end_inset
Sean
-\begin_inset Formula ${\cal P}:=\{f_{\alpha}:=\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$
+\begin_inset Formula ${\cal P}:=\{f_{\alpha}\mid =\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$
\end_inset
y
@@ -1107,7 +1107,7 @@ clausura normal
, y viene dada por
\begin_inset Formula
\[
-N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}:K\subseteq E\text{ normal}\}.
+N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}\mid K\subseteq E\text{ normal}\}.
\]
\end_inset
diff --git a/ealg/n7.lyx b/ealg/n7.lyx
index 2faa1a1..f5f15b6 100644
--- a/ealg/n7.lyx
+++ b/ealg/n7.lyx
@@ -83,7 +83,7 @@
\begin_layout Standard
\begin_inset Formula
\[
-\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K:\bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}.
+\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K\mid \bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}.
\]
\end_inset
@@ -139,8 +139,8 @@ conexión de Galois
dado por
\begin_inset Formula
\begin{align*}
-f(F):=F' & :=\{\sigma\in G:\forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\
-g(H):=H' & :=\{\alpha\in L:\forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma.
+f(F):=F' & :=\{\sigma\in G\mid \forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\
+g(H):=H' & :=\{\alpha\in L\mid \forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma.
\end{align*}
\end_inset
@@ -150,7 +150,7 @@ En particular, para
\end_inset
,
-\begin_inset Formula $K(\beta)'=\{\sigma\in G:\sigma(\beta)=\beta\}$
+\begin_inset Formula $K(\beta)'=\{\sigma\in G\mid \sigma(\beta)=\beta\}$
\end_inset
, y para
diff --git a/edo/n.pdf b/edo/n.pdf
deleted file mode 100644
index 88ff256..0000000
--- a/edo/n.pdf
+++ /dev/null
Binary files differ
diff --git a/epe/n.pdf b/epe/n.pdf
deleted file mode 100644
index d992aea..0000000
--- a/epe/n.pdf
+++ /dev/null
Binary files differ
diff --git a/fc/AND_ANSI_Labelled.svg b/fc/AND_ANSI_Labelled.svg
index ee294dc..5ee5c9c 100644
--- a/fc/AND_ANSI_Labelled.svg
+++ b/fc/AND_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/NAND_ANSI_Labelled.svg b/fc/NAND_ANSI_Labelled.svg
index 7f97027..719786a 100644
--- a/fc/NAND_ANSI_Labelled.svg
+++ b/fc/NAND_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/NOR_ANSI_Labelled.svg b/fc/NOR_ANSI_Labelled.svg
index 0fd18f9..01f63e4 100644
--- a/fc/NOR_ANSI_Labelled.svg
+++ b/fc/NOR_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/Not-gate-en.svg b/fc/Not-gate-en.svg
index daf957b..523d62d 100644
--- a/fc/Not-gate-en.svg
+++ b/fc/Not-gate-en.svg
Binary files differ
diff --git a/fc/OR_ANSI_Labelled.svg b/fc/OR_ANSI_Labelled.svg
index 6275ef9..05b61be 100644
--- a/fc/OR_ANSI_Labelled.svg
+++ b/fc/OR_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/XOR_ANSI.svg b/fc/XOR_ANSI.svg
index 6f14e5b..4981dec 100644
--- a/fc/XOR_ANSI.svg
+++ b/fc/XOR_ANSI.svg
Binary files differ
diff --git a/fc/Xnor-gate-en.svg b/fc/Xnor-gate-en.svg
index b205563..2a18ed0 100644
--- a/fc/Xnor-gate-en.svg
+++ b/fc/Xnor-gate-en.svg
Binary files differ
diff --git a/fc/n1.lyx b/fc/n1.lyx
index d912189..abb69b9 100644
--- a/fc/n1.lyx
+++ b/fc/n1.lyx
@@ -134,9 +134,33 @@ esquema de Von Neumann
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
+\align center
\begin_inset Graphics
filename buses.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Esquema von Neumann en un ordenador moderno.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
@@ -749,10 +773,33 @@ Unified Extensible Firmware Interface
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename image.TZVI9Y.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Placa base de un ordenador de escritorio típico.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
diff --git a/fc/n3.lyx b/fc/n3.lyx
index 63254ed..c38761d 100644
--- a/fc/n3.lyx
+++ b/fc/n3.lyx
@@ -393,8 +393,9 @@ Puertas lógicas
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename AND_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename AND_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -541,8 +542,9 @@ AND
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename OR_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename OR_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -689,8 +691,9 @@ OR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename XOR_ANSI.svg
+\begin_inset External
+ template VectorGraphics
+ filename XOR_ANSI.pdf
height 14pt
\end_inset
@@ -730,8 +733,9 @@ XOR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename NAND_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename NAND_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -767,8 +771,9 @@ NAND
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename NOR_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename NOR_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -804,8 +809,9 @@ NOR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename Xnor-gate-en.svg
+\begin_inset External
+ template VectorGraphics
+ filename Xnor-gate-en.pdf
height 14pt
\end_inset
@@ -909,8 +915,9 @@ XNOR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename Not-gate-en.svg
+\begin_inset External
+ template VectorGraphics
+ filename Not-gate-en.pdf
height 14pt
\end_inset
@@ -1047,6 +1054,12 @@ Circuito con
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename image.RAWR9Y.png
@@ -1057,6 +1070,23 @@ Circuito con
\end_layout
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Codificador.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Subsection
Decodificador
\end_layout
@@ -1075,6 +1105,12 @@ Circuito con
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename image.V5MB9Y.png
@@ -1085,6 +1121,23 @@ Circuito con
\end_layout
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Decodificador.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Podemos implementar una función con un decodificador conectando las salidas
correspondientes a un
@@ -1113,9 +1166,33 @@ Circuito con
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
+\align center
\begin_inset Graphics
filename image.0PXO9Y.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Multiplexores.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
@@ -1186,9 +1263,33 @@ anchura
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
+\align center
\begin_inset Graphics
filename image.Y3EN9Y.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Memoria ROM.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
diff --git a/fli/n6.lyx b/fli/n6.lyx
index f89c446..204b6d1 100644
--- a/fli/n6.lyx
+++ b/fli/n6.lyx
@@ -253,7 +253,7 @@ En relaciones con aridad
dominio
\series default
como
-\begin_inset Formula $\text{Dom}(R)=\{(x_{1},\dots,x_{n-1})|\exists x_{n}:(x_{1},\dots,x_{n})\in R\}$
+\begin_inset Formula $\text{Dom}(R)=\{(x_{1},\dots,x_{n-1})|\exists x_{n}\mid (x_{1},\dots,x_{n})\in R\}$
\end_inset
(si la aridad es
@@ -261,7 +261,7 @@ dominio
\end_inset
, entonces
-\begin_inset Formula $\text{Dom}(R)=\{x|\exists y:xRy\}$
+\begin_inset Formula $\text{Dom}(R)=\{x|\exists y\mid xRy\}$
\end_inset
), y el
@@ -269,7 +269,7 @@ dominio
rango
\series default
como
-\begin_inset Formula $\text{Ran}(R)=\{x_{n}|\exists(x_{1},\dots,x_{n-1}):(x_{1},\dots,x_{n})\in R\}$
+\begin_inset Formula $\text{Ran}(R)=\{x_{n}|\exists(x_{1},\dots,x_{n-1})\mid (x_{1},\dots,x_{n})\in R\}$
\end_inset
(si la aridad es
@@ -277,7 +277,7 @@ rango
\end_inset
, entonces
-\begin_inset Formula $\text{Ran}(R)=\{y|\exists x:xRy\}$
+\begin_inset Formula $\text{Ran}(R)=\{y|\exists x\mid xRy\}$
\end_inset
.
diff --git a/fuvr1/n1.lyx b/fuvr1/n1.lyx
index c26556f..fe23ed5 100644
--- a/fuvr1/n1.lyx
+++ b/fuvr1/n1.lyx
@@ -269,7 +269,7 @@ Pongamos que existe otro
Inverso para el producto:
\series default
-\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a'':a\cdot a''=1$
+\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a''\mid a\cdot a''=1$
\end_inset
;
@@ -893,7 +893,7 @@ bicho
\end_inset
-\begin_inset Formula $\bigcap\{I:I\text{ es un conjunto inductivo de }\mathbb{R}\}$
+\begin_inset Formula $\bigcap\{I\mid I\text{ es un conjunto inductivo de }\mathbb{R}\}$
\end_inset
, la intersección de todos los conjuntos inductivos y por tanto el más pequeño
@@ -960,7 +960,7 @@ Para
.
Entonces
-\begin_inset Formula $S=\{n\in\mathbb{N}:1<n<2\}\neq\emptyset\land r\in s$
+\begin_inset Formula $S=\{n\in\mathbb{N}\mid 1<n<2\}\neq\emptyset\land r\in s$
\end_inset
.
@@ -1023,11 +1023,11 @@ Demostrar resto de propiedades cuando las estudiemos, si no como ejercicio.
\begin_layout Standard
Definimos
-\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}:n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$
+\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}\mid n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$
\end_inset
y
-\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}:m\in\mathbb{Z},n\in\mathbb{N}\}$
+\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}\mid m\in\mathbb{Z},n\in\mathbb{N}\}$
\end_inset
.
@@ -1098,7 +1098,7 @@ Dado un número natural
\end_inset
, un conjunto
-\begin_inset Formula $S\subseteq\{n\in\mathbb{N}:n\geq N\}\subseteq\mathbb{N}$
+\begin_inset Formula $S\subseteq\{n\in\mathbb{N}\mid n\geq N\}\subseteq\mathbb{N}$
\end_inset
nos sirve para realizar demostraciones para los naturales a partir de un
@@ -1145,7 +1145,7 @@ Teorema Fundamental de la Aritmética
Demostración:
\series default
Sea
-\begin_inset Formula $A=\{2\leq n\in\mathbb{N}:n\text{ cumple el Teorema Fund. de la Aritmética}\}$
+\begin_inset Formula $A=\{2\leq n\in\mathbb{N}\mid n\text{ cumple el Teorema Fund. de la Aritmética}\}$
\end_inset
.
@@ -1233,7 +1233,7 @@ propiedad arquimediana:
Demostración:
\series default
De no ser así,
-\begin_inset Formula $A:=\{ny:n\in\mathbb{N}\}$
+\begin_inset Formula $A:=\{ny\mid n\in\mathbb{N}\}$
\end_inset
estaría acotado superiormente por
@@ -1405,7 +1405,7 @@ Demostremos que existe.
\end_inset
, se tiene que el conjunto
-\begin_inset Formula $\{n\in\mathbb{N}:n>x\}\neq\emptyset$
+\begin_inset Formula $\{n\in\mathbb{N}\mid n>x\}\neq\emptyset$
\end_inset
, por lo que tiene un primer elemento
@@ -1542,7 +1542,7 @@ raíz cuadrada
Definimos
\begin_inset Formula
\[
-\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}:r^{2}<x\}
+\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}\mid r^{2}<x\}
\]
\end_inset
@@ -1805,7 +1805,7 @@ Ahora veremos que esto también se cumple con si
\end_layout
\begin_layout Standard
-\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}:r^{2}<2\})$
+\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}\mid r^{2}<2\})$
\end_inset
.
@@ -1821,7 +1821,7 @@ status open
Demostración:
\series default
Sea
-\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}:r^{2}<2\}$
+\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}\mid r^{2}<2\}$
\end_inset
.
@@ -1950,7 +1950,7 @@ Sea
.
También podemos probar que
-\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r:r\in\mathbb{Q},r<x\}$
+\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r\mid r\in\mathbb{Q},r<x\}$
\end_inset
, pues si
@@ -2235,7 +2235,7 @@ Sea
\end_inset
;
-\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}:r^{p}<x\}$
+\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}\mid r^{p}<x\}$
\end_inset
.
@@ -2266,7 +2266,7 @@ raíz
Lo escribimos como
\begin_inset Formula
\[
-x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r:r\in\mathbb{Q},r^{p}<x\}
+x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r\mid r\in\mathbb{Q},r^{p}<x\}
\]
\end_inset
diff --git a/fuvr1/n2.lyx b/fuvr1/n2.lyx
index bb73cad..6312a4f 100644
--- a/fuvr1/n2.lyx
+++ b/fuvr1/n2.lyx
@@ -369,7 +369,7 @@ intervalo cerrado
\end_inset
al conjunto
-\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$
+\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}$
\end_inset
,
@@ -377,7 +377,7 @@ intervalo cerrado
intervalo abierto
\series default
a
-\begin_inset Formula $(a,b):=\{x\in\mathbb{R}:a<x<b\}$
+\begin_inset Formula $(a,b):=\{x\in\mathbb{R}\mid a<x<b\}$
\end_inset
e
@@ -385,11 +385,11 @@ intervalo abierto
intervalos semiabiertos
\series default
por la derecha e izquierda, respectivamente, a
-\begin_inset Formula $[a,b):=\{x\in\mathbb{R}:a\leq x<b\}$
+\begin_inset Formula $[a,b):=\{x\in\mathbb{R}\mid a\leq x<b\}$
\end_inset
y
-\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}:a<x\leq b\}$
+\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}\mid a<x\leq b\}$
\end_inset
.
@@ -415,7 +415,7 @@ bola cerrada
\end_inset
al conjunto
-\begin_inset Formula $B[x_{0},r]:=\{x\in K:|x-x_{0}|\leq r\}$
+\begin_inset Formula $B[x_{0},r]:=\{x\in K\mid |x-x_{0}|\leq r\}$
\end_inset
, y
@@ -423,7 +423,7 @@ bola cerrada
bola abierta
\series default
a
-\begin_inset Formula $B(x_{0},r):=\{x\in K:|x-x_{0}|<r\}$
+\begin_inset Formula $B(x_{0},r):=\{x\in K\mid |x-x_{0}|<r\}$
\end_inset
.
@@ -504,7 +504,7 @@ Demostración:
\begin_layout Standard
Toda sucesión convergente es acotada, es decir
-\begin_inset Formula $\{a_{n}:n\in\mathbb{N}\}$
+\begin_inset Formula $\{a_{n}\mid n\in\mathbb{N}\}$
\end_inset
es un conjunto acotado.
@@ -1567,11 +1567,11 @@ Demostración:
.
Entonces uno de los conjuntos
-\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[c_{0},m_{0}]\}$
+\begin_inset Formula $\{n\in\mathbb{N}\mid a_{n}\in[c_{0},m_{0}]\}$
\end_inset
o
-\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[m_{0},d_{0}]\}$
+\begin_inset Formula $\{n\in\mathbb{N}\mid a_{n}\in[m_{0},d_{0}]\}$
\end_inset
es infinito.
@@ -2744,7 +2744,7 @@ Demostración:
\end_inset
y sea
-\begin_inset Formula $A:=\{z\in\mathbb{R}:a^{z}\leq x\}$
+\begin_inset Formula $A:=\{z\in\mathbb{R}\mid a^{z}\leq x\}$
\end_inset
, que sabemos acotado superiormente.
diff --git a/fuvr1/n3.lyx b/fuvr1/n3.lyx
index 95517f3..e8b4534 100644
--- a/fuvr1/n3.lyx
+++ b/fuvr1/n3.lyx
@@ -1431,7 +1431,7 @@ Existen
\end_inset
Si
-\begin_inset Formula $\alpha:=\sup\{f(x):x\in[a,b]\}$
+\begin_inset Formula $\alpha:=\sup\{f(x)\mid x\in[a,b]\}$
\end_inset
, existe
diff --git a/fuvr2/n1.lyx b/fuvr2/n1.lyx
index a8766da..b840f8f 100644
--- a/fuvr2/n1.lyx
+++ b/fuvr2/n1.lyx
@@ -1141,7 +1141,7 @@ Sea
.
Sea
-\begin_inset Formula $A:=\{z\in(x,y]:f(x)\leq f(z)\}$
+\begin_inset Formula $A:=\{z\in(x,y]\mid f(x)\leq f(z)\}$
\end_inset
, como
diff --git a/fuvr2/n2.lyx b/fuvr2/n2.lyx
index 9d5d103..b0dcf59 100644
--- a/fuvr2/n2.lyx
+++ b/fuvr2/n2.lyx
@@ -263,7 +263,7 @@ de Darboux
), respectivamente, a
\begin_inset Formula
\begin{eqnarray*}
-\underline{\int_{a}^{b}}f:=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])} & \text{ y } & \overline{\int_{a}^{b}}f:=\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])}
+\underline{\int_{a}^{b}}f:=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])} & \text{ y } & \overline{\int_{a}^{b}}f\mid =\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])}
\end{eqnarray*}
\end_inset
diff --git a/fuvr2/n3.lyx b/fuvr2/n3.lyx
index 5d9c1ab..9db6cf2 100644
--- a/fuvr2/n3.lyx
+++ b/fuvr2/n3.lyx
@@ -489,7 +489,7 @@ Vemos que
\begin_layout Standard
El conjunto
-\begin_inset Formula $\{x>0:\cos x=0\}$
+\begin_inset Formula $\{x>0\mid \cos x=0\}$
\end_inset
es no vacío y de hecho tiene un primer elemento, que se denota
diff --git a/fvc/n2.lyx b/fvc/n2.lyx
index b18a007..61c71c9 100644
--- a/fvc/n2.lyx
+++ b/fvc/n2.lyx
@@ -91,7 +91,7 @@ Teorema de Cauchy-Goursat:
\end_inset
y
-\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c:\mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
+\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
\end_inset
, entonces
@@ -1583,7 +1583,7 @@ Sean
\end_inset
y
-\begin_inset Formula $H:=\{z\in\mathbb{C}:d(z,K)\leq\rho\}$
+\begin_inset Formula $H:=\{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$
\end_inset
, con lo que
diff --git a/fvc/n3.lyx b/fvc/n3.lyx
index 58662d2..a2494f8 100644
--- a/fvc/n3.lyx
+++ b/fvc/n3.lyx
@@ -87,7 +87,7 @@ Sean
\end_inset
y
-\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$
+\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
\end_inset
,
@@ -210,7 +210,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $A:=\{z\in\Omega:\forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
+\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
\end_inset
, pues
@@ -221,7 +221,7 @@ status open
Como
\begin_inset Formula
\[
-A=\bigcap_{k=0}^{\infty}\{z\in\Omega:f^{(k)}(z)=0\},
+A=\bigcap_{k=0}^{\infty}\{z\in\Omega\mid f^{(k)}(z)=0\},
\]
\end_inset
@@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas
\end_inset
no es idénticamente nula, entonces todo punto de
-\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$
+\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
\end_inset
es aislado y
@@ -377,7 +377,7 @@ cero
orden
\series default
-\begin_inset Formula $\min\{n\in\mathbb{N}:f^{(n)}(a)\neq0\}$
+\begin_inset Formula $\min\{n\in\mathbb{N}\mid f^{(n)}(a)\neq0\}$
\end_inset
.
diff --git a/fvc/n4.lyx b/fvc/n4.lyx
index c7ae304..cfd60f7 100644
--- a/fvc/n4.lyx
+++ b/fvc/n4.lyx
@@ -968,7 +968,7 @@ f'(z) & \text{si }z=w.
\end_inset
es continua en
-\begin_inset Formula $\{(z,w)\in\Omega\times\Omega:z\neq w\}$
+\begin_inset Formula $\{(z,w)\in\Omega\times\Omega\mid z\neq w\}$
\end_inset
.
@@ -1083,7 +1083,7 @@ Ahora bien, fijado
\begin_layout Standard
Sea
-\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$
+\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
\end_inset
, que es abierto por ser unión de componentes conexas de
@@ -1834,7 +1834,7 @@ Sean
\end_inset
, entonces
-\begin_inset Formula $\{a\in S:\text{Ind}_{\Gamma}(a)\neq0\}$
+\begin_inset Formula $\{a\in S\mid \text{Ind}_{\Gamma}(a)\neq0\}$
\end_inset
es finito y
@@ -1854,7 +1854,7 @@ Sean
Demostración:
\series default
Sea
-\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$
+\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
\end_inset
, que es abierto por ser unión de componentes conexas de
@@ -1886,7 +1886,7 @@ status open
.
Sea
-\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)\neq0\}$
+\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$
\end_inset
, que es cerrado por ser complementario de un abierto y acotado porque no
@@ -1896,7 +1896,7 @@ status open
, luego es compacto.
Si
-\begin_inset Formula $S\cap K=\{a\in S:\text{Ind}_{\Gamma}(z)\neq0\}$
+\begin_inset Formula $S\cap K=\{a\in S\mid \text{Ind}_{\Gamma}(z)\neq0\}$
\end_inset
no fuera finito, tendría un punto de acumulación que, por compacidad, debería
diff --git a/fvv1/n1.lyx b/fvv1/n1.lyx
index 41aa455..e3422b2 100644
--- a/fvv1/n1.lyx
+++ b/fvv1/n1.lyx
@@ -163,7 +163,7 @@ Ejemplos de normas en
.
Además,
-\begin_inset Formula $V:={\cal C}[a,b]:=\{f:[a,b]\rightarrow\mathbb{R}\text{ continua}\}$
+\begin_inset Formula $V:={\cal C}[a,b]:=\{f\mid [a,b]\rightarrow\mathbb{R}\text{ continua}\}$
\end_inset
con
@@ -706,7 +706,7 @@ teorema
, que es continua por ser composición de dos funciones continuas (la identidad
es continua por la otra cota y la demostración del teorema anterior), entonces
-\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}:\Vert x\Vert_{1}=1\}$
+\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}\mid \Vert x\Vert_{1}=1\}$
\end_inset
es cerrado dentro del compacto
diff --git a/fvv1/n2.lyx b/fvv1/n2.lyx
index 14dd50a..1b761e2 100644
--- a/fvv1/n2.lyx
+++ b/fvv1/n2.lyx
@@ -897,7 +897,7 @@ to por abiertos de
\end_inset
y
-\begin_inset Formula $\{B_{i}\}_{i=1}^{k}:=\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$
+\begin_inset Formula $\{B_{i}\}_{i=1}^{k}\mid =\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$
\end_inset
un subrecubrimiento finito del que suponemos que no podemos quitar ninguna
diff --git a/fvv1/n3.lyx b/fvv1/n3.lyx
index 776351a..91f5019 100644
--- a/fvv1/n3.lyx
+++ b/fvv1/n3.lyx
@@ -840,7 +840,7 @@ suponiendo
.
Pero
-\begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}:\Vert y\Vert=1\}=:K$
+\begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}\mid \Vert y\Vert=1\}=:K$
\end_inset
, que es compacto por ser cerrado y acotado, y
diff --git a/fvv1/n4.lyx b/fvv1/n4.lyx
index 07fa28a..f95baae 100644
--- a/fvv1/n4.lyx
+++ b/fvv1/n4.lyx
@@ -104,7 +104,7 @@ implícita
un abierto.
La región
-\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}:f(x_{1},\dots,x_{n})=0\}$
+\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}\mid f(x_{1},\dots,x_{n})=0\}$
\end_inset
está
@@ -459,7 +459,7 @@ Si
\end_inset
está dado en forma implícita como
-\begin_inset Formula $\{x\in{\cal U}:g(x)=0\}$
+\begin_inset Formula $\{x\in{\cal U}\mid g(x)=0\}$
\end_inset
, donde
diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx
index 7f67d1f..e7eda47 100644
--- a/fvv2/n1.lyx
+++ b/fvv2/n1.lyx
@@ -208,7 +208,7 @@ gráfica
a
\begin_inset Formula
\[
-\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
+\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
\]
\end_inset
@@ -221,7 +221,7 @@ subgrafo
\begin_inset Formula
\begin{multline*}
\text{subgraf}(f):=\\
-\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
+\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
\end{multline*}
\end_inset
@@ -1452,7 +1452,7 @@ Sea
\end_inset
,
-\begin_inset Formula $B:=\{x\in A:\text{osc}(f,x)\geq\varepsilon\}$
+\begin_inset Formula $B:=\{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$
\end_inset
es cerrado.
@@ -1539,7 +1539,7 @@ teorema de Lebesgue de caracterización de las funciones integrables
\end_inset
si y sólo si
-\begin_inset Formula $B:=\{x\in R:f\text{ no es continua en }x\}$
+\begin_inset Formula $B:=\{x\in R\mid f\text{ no es continua en }x\}$
\end_inset
tiene medida nula.
@@ -1559,7 +1559,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $B_{k}:=\{x\in R:o(f,x)\geq\frac{1}{k}\}$
+\begin_inset Formula $B_{k}:=\{x\in R\mid o(f,x)\geq\frac{1}{k}\}$
\end_inset
, basta probar que cada
diff --git a/fvv2/n2.lyx b/fvv2/n2.lyx
index 56b1b12..bd555e8 100644
--- a/fvv2/n2.lyx
+++ b/fvv2/n2.lyx
@@ -654,7 +654,7 @@ espacio de medida
\end_inset
-finita si y sólo si
-\begin_inset Formula $\{x\in\Omega:f(x)>0\}$
+\begin_inset Formula $\{x\in\Omega\mid f(x)>0\}$
\end_inset
es numerable.
@@ -889,7 +889,7 @@ medida exterior
como
\begin_inset Formula
\[
-\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k})):B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\}
+\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k}))\mid B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\}
\]
\end_inset
@@ -1146,7 +1146,7 @@ Para
\end_inset
, y por tanto
-\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A):A\supseteq S\text{ abierto}\}$
+\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A)\mid A\supseteq S\text{ abierto}\}$
\end_inset
.
diff --git a/fvv2/n3.lyx b/fvv2/n3.lyx
index a35f67f..11ac40c 100644
--- a/fvv2/n3.lyx
+++ b/fvv2/n3.lyx
@@ -172,7 +172,7 @@ status open
\end_inset
Sea
-\begin_inset Formula ${\cal A}:=\{E\in\Sigma':f^{-1}(E)\in\Sigma\}$
+\begin_inset Formula ${\cal A}:=\{E\in\Sigma'\mid f^{-1}(E)\in\Sigma\}$
\end_inset
, vemos que
@@ -627,7 +627,7 @@ Una función
\end_inset
y la notación
-\begin_inset Formula $\{f\bullet a\}:=\{\omega\in\Omega:f(\omega)\bullet a\}$
+\begin_inset Formula $\{f\bullet a\}\mid =\{\omega\in\Omega\mid f(\omega)\bullet a\}$
\end_inset
.
@@ -1554,7 +1554,7 @@ Sea
\end_inset
y
-\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega):h\geq0\}$
+\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega)\mid h\geq0\}$
\end_inset
, llamamos
@@ -1719,7 +1719,7 @@ Para
medible, se define
\begin_inset Formula
\[
-\int f\,d\mu:=\sup\left\{ \int s\,d\mu:s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
+\int f\,d\mu:=\sup\left\{ \int s\,d\mu\mid s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
\]
\end_inset
@@ -2236,7 +2236,7 @@ Una función medible
\end_inset
, si y sólo si
-\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}:\Omega\rightarrow[-\infty,+\infty]$
+\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}\mid \Omega\rightarrow[-\infty,+\infty]$
\end_inset
son integrables, y definimos
@@ -3315,11 +3315,11 @@ Demostración:
\end_inset
es continua, y como
-\begin_inset Formula $\delta:=\min\{d(x,K):x\notin A\}>0$
+\begin_inset Formula $\delta:=\min\{d(x,K)\mid x\notin A\}>0$
\end_inset
,
-\begin_inset Formula $A_{0}:=\{x:d(x,K)<\frac{\delta}{2}\}$
+\begin_inset Formula $A_{0}:=\{x\mid d(x,K)<\frac{\delta}{2}\}$
\end_inset
es un abierto acotado con
@@ -3328,7 +3328,7 @@ Demostración:
.
Tomando
-\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x:d(x,K)\geq\frac{\delta}{2}\}$
+\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x\mid d(x,K)\geq\frac{\delta}{2}\}$
\end_inset
, podemos definir
diff --git a/fvv2/n4.lyx b/fvv2/n4.lyx
index 6628b45..2db00c5 100644
--- a/fvv2/n4.lyx
+++ b/fvv2/n4.lyx
@@ -360,7 +360,7 @@ teorema
\end_inset
es acotada y
-\begin_inset Formula $D(f):=\{x\in[a,b]:f\text{ es discontinua en }x\}$
+\begin_inset Formula $D(f):=\{x\in[a,b]\mid f\text{ es discontinua en }x\}$
\end_inset
, entonces
diff --git a/fvv3/n.pdf b/fvv3/n.pdf
deleted file mode 100644
index 397a272..0000000
--- a/fvv3/n.pdf
+++ /dev/null
Binary files differ
diff --git a/ga/n1.lyx b/ga/n1.lyx
index 16a9bef..d1b406c 100644
--- a/ga/n1.lyx
+++ b/ga/n1.lyx
@@ -2271,7 +2271,7 @@ Dado un espacio topológico
\end_inset
,
-\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$
+\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$
\end_inset
es un subanillo de
@@ -2287,7 +2287,7 @@ Dado un espacio vectorial
\end_inset
,
-\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$
+\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$
\end_inset
es un subanillo de
@@ -2307,7 +2307,7 @@ Dado un anillo
\end_inset
,
-\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$
+\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$
\end_inset
es un subanillo de
@@ -3944,7 +3944,7 @@ Demostración:
\end_inset
, pues
-\begin_inset Formula $\pi^{-1}(J/I)=\{x:\pi(x)=[x]\in J/I\}$
+\begin_inset Formula $\pi^{-1}(J/I)=\{x\mid\pi(x)=[x]\in J/I\}$
\end_inset
, pero si
@@ -4005,7 +4005,7 @@ Ahora vemos que, dado un ideal
\end_inset
,
-\begin_inset Formula $\pi^{-1}(X)=\{x:[x]\in X\}\ni0$
+\begin_inset Formula $\pi^{-1}(X)=\{x\mid[x]\in X\}\ni0$
\end_inset
; para
@@ -4058,7 +4058,7 @@ Ahora vemos que, dado un ideal
.
Además,
-\begin_inset Formula $\pi^{-1}(X)/I=\{x:[x]\in X\}/I=\{[x]:[x]\in X\}=X$
+\begin_inset Formula $\pi^{-1}(X)/I=\{x\mid[x]\in X\}/I=\{[x]\mid[x]\in X\}=X$
\end_inset
.
@@ -4185,8 +4185,8 @@ La intersección de una familia de ideales de
, definimos los ideales
\begin_inset Formula
\begin{eqnarray*}
-\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}:S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
-\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}:n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
+\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}\;\middle|\;S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
+\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}\;\middle|\;n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
\end{eqnarray*}
\end_inset
@@ -4257,7 +4257,7 @@ En efecto,
\end_inset
,
-\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
+\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}\mid n,m|k\}=\{k\mid\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
\end_inset
y
diff --git a/ga/n2.lyx b/ga/n2.lyx
index 11e1265..caf4b8a 100644
--- a/ga/n2.lyx
+++ b/ga/n2.lyx
@@ -2668,7 +2668,7 @@ Si
.
Veamos que
-\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x:|N(x)|=1\}$
+\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x\mid |N(x)|=1\}$
\end_inset
.
@@ -3376,7 +3376,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
diff --git a/ga/n3.lyx b/ga/n3.lyx
index bd1768b..d3edbf2 100644
--- a/ga/n3.lyx
+++ b/ga/n3.lyx
@@ -169,11 +169,11 @@ polinomios constantes
\end_inset
,
-\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$
+\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$
\end_inset
e
-\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$
+\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$
\end_inset
son ideales de
@@ -197,7 +197,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -1570,7 +1570,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
\end_inset
@@ -3473,7 +3473,7 @@ Definimos
\end_inset
,
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y para
@@ -4641,7 +4641,7 @@ Demostración:
\end_inset
, luego existe
-\begin_inset Formula $i:=\min\{j:p\nmid b_{j}\}$
+\begin_inset Formula $i:=\min\{j\mid p\nmid b_{j}\}$
\end_inset
y entonces
diff --git a/ga/n4.lyx b/ga/n4.lyx
index 23c1d2f..accc8be 100644
--- a/ga/n4.lyx
+++ b/ga/n4.lyx
@@ -745,7 +745,7 @@ Si
\end_inset
es una familia de grupos,
-\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$
+\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$
\end_inset
es un subgrupo de
@@ -773,7 +773,7 @@ centralizador
\end_inset
es el subgrupo
-\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$
+\begin_inset Formula $C_{G}(x):=\{g\in G\mid gx=xg\}$
\end_inset
, y el
@@ -785,7 +785,7 @@ centro
\end_inset
es el subgrupo abeliano
-\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
+\begin_inset Formula $Z(G):=\{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
\end_inset
.
@@ -2973,7 +2973,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid g\cdot x=x\}$
\end_inset
.
@@ -3014,7 +3014,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid x\cdot g=x\}$
\end_inset
.
@@ -3050,7 +3050,7 @@ acción por translación a la izquierda
y
\begin_inset Formula
\[
-\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
+\text{Estab}_{G}(xH)=\{g\in G\mid gxH=xH\}=\{g\in G\mid x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
\]
\end_inset
@@ -3170,7 +3170,7 @@ normalizador
\end_inset
es
-\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$
+\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$
\end_inset
, el mayor subgrupo de
@@ -3393,12 +3393,12 @@ status open
\begin_layout Plain Layout
Si la acción es por la izquierda,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}\mid h\cdot x=x\}=\{p\in G\mid g^{-1}pg\cdot x=x\}=\{p\in G\mid p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
\end_inset
.
Si es por la derecha,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$
\end_inset
.
@@ -3606,7 +3606,7 @@ status open
Demostración:
\series default
Sea
-\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$
+\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$
\end_inset
,
diff --git a/ga/n5.lyx b/ga/n5.lyx
index b562086..668a3e2 100644
--- a/ga/n5.lyx
+++ b/ga/n5.lyx
@@ -98,7 +98,7 @@ suma
\end_inset
a
-\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}:b_{i}\in B_{i},\{i\in I:b_{i}\neq0\}\text{ es finito}\}$
+\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}\mid b_{i}\in B_{i},\{i\in I\mid b_{i}\neq0\}\text{ es finito}\}$
\end_inset
.
@@ -453,7 +453,7 @@ Para
\end_inset
con
-\begin_inset Formula $\{i\in I:b_{i}\neq0\}$
+\begin_inset Formula $\{i\in I\mid b_{i}\neq0\}$
\end_inset
finito.
@@ -704,7 +704,7 @@ subgrupo de
es
\begin_inset Formula
\[
-t_{p}(A):=\{a\in A:\exists n\in\mathbb{N}:p^{n}a=0\}=\{a\in A:|a|\text{ es potencia de }p\}.
+t_{p}(A):=\{a\in A\mid \exists n\in\mathbb{N}\mid p^{n}a=0\}=\{a\in A\mid |a|\text{ es potencia de }p\}.
\]
\end_inset
diff --git a/ga/n6.lyx b/ga/n6.lyx
index f59c930..6641cef 100644
--- a/ga/n6.lyx
+++ b/ga/n6.lyx
@@ -168,7 +168,7 @@ mueve
\series default
en caso contrario.
Llamamos
-\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}:\sigma(i)\neq i\}$
+\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}\mid \sigma(i)\neq i\}$
\end_inset
, y es claro que
diff --git a/gae/n2.lyx b/gae/n2.lyx
index 955f8af..79c5de1 100644
--- a/gae/n2.lyx
+++ b/gae/n2.lyx
@@ -718,7 +718,7 @@ punto fijo
, y definimos
\begin_inset Formula
\[
-\text{Fix}(f):=\{Q\in{\cal E}:f(Q)=Q\}
+\text{Fix}(f):=\{Q\in{\cal E}\mid f(Q)=Q\}
\]
\end_inset
@@ -755,7 +755,7 @@ vectores invariantes
o asociado al autovalor 1,
\begin_inset Formula
\[
-\text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V:\phi(\vec{v})=\vec{v}\}
+\text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=\vec{v}\}
\]
\end_inset
@@ -771,7 +771,7 @@ opuestos
,
\begin_inset Formula
\[
-\text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V:\phi(\vec{v})=-\vec{v}\}
+\text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=-\vec{v}\}
\]
\end_inset
diff --git a/gcs/n1.lyx b/gcs/n1.lyx
index 6e1fd95..75dd0c2 100644
--- a/gcs/n1.lyx
+++ b/gcs/n1.lyx
@@ -1647,11 +1647,11 @@ distancia orientada
\end_inset
en dos semiplanos
-\begin_inset Formula $H^{+}:=\{p:\text{dist}(p,\ell)\geq0\}$
+\begin_inset Formula $H^{+}:=\{p\mid \text{dist}(p,\ell)\geq0\}$
\end_inset
y
-\begin_inset Formula $H^{-}:=\{p:\text{dist}(p,\ell)\leq0\}$
+\begin_inset Formula $H^{-}:=\{p\mid \text{dist}(p,\ell)\leq0\}$
\end_inset
, de modo que
diff --git a/gcs/n2.lyx b/gcs/n2.lyx
index 61adb12..b768ad2 100644
--- a/gcs/n2.lyx
+++ b/gcs/n2.lyx
@@ -2984,7 +2984,7 @@ Sean
\end_inset
y
-\begin_inset Formula $J:=\{t\in I:\alpha(t)\in V\}$
+\begin_inset Formula $J:=\{t\in I\mid \alpha(t)\in V\}$
\end_inset
, entonces
@@ -4304,7 +4304,7 @@ Sean
\end_inset
y
-\begin_inset Formula $A:=\{p\in S:f(p)=a\}\neq\emptyset$
+\begin_inset Formula $A:=\{p\in S\mid f(p)=a\}\neq\emptyset$
\end_inset
, pues
@@ -4698,7 +4698,7 @@ Dados
\end_inset
, el cilindro
-\begin_inset Formula $C:=\{(x,y,z):x^{2}+y^{2}=r^{2}\}$
+\begin_inset Formula $C:=\{(x,y,z)\mid x^{2}+y^{2}=r^{2}\}$
\end_inset
y la parametrización
diff --git a/gcs/n3.lyx b/gcs/n3.lyx
index 5bae145..4cdb4d4 100644
--- a/gcs/n3.lyx
+++ b/gcs/n3.lyx
@@ -472,7 +472,7 @@ Sea
\end_inset
es la superficie de nivel
-\begin_inset Formula $\{p:f(p)=r^{2}\}$
+\begin_inset Formula $\{p\mid f(p)=r^{2}\}$
\end_inset
, luego admite la orientación
@@ -1018,7 +1018,7 @@ Los cilindros se obtienen por un movimiento de
\end_inset
,
-\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0):x^{2}+y^{2}=r^{2}\}=\{(x,y,0):x^{2}+y^{2}=1\}$
+\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0)\mid x^{2}+y^{2}=r^{2}\}=\{(x,y,0)\mid x^{2}+y^{2}=1\}$
\end_inset
.
@@ -2275,7 +2275,7 @@ El cilindro
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v):=(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\mid =(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
\end_inset
,
@@ -2635,7 +2635,7 @@ status open
\begin_layout Plain Layout
La superficie es el grafo
-\begin_inset Formula $S:=\{X(u,v):=(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $S:=\{X(u,v)\mid =(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
\end_inset
, de modo que
diff --git a/ggs/n2.lyx b/ggs/n2.lyx
index f18290a..09e8555 100644
--- a/ggs/n2.lyx
+++ b/ggs/n2.lyx
@@ -569,7 +569,7 @@ intervalo maximal de existencia
Demostración:
\series default
Sea
-\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha):\alpha:I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
+\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
\end_inset
.
@@ -669,7 +669,7 @@ Sean ahora
es abierto y, por el teorema del peine, también conexo, luego es un intervalo.
Sea
-\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}:\alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
+\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
\end_inset
, y queremos ver que
@@ -1401,7 +1401,7 @@ geodésicamente completa
\begin_layout Enumerate
Dado el plano
-\begin_inset Formula $S=\{p\in\mathbb{R}^{3}:\langle p,a\rangle=c\}$
+\begin_inset Formula $S=\{p\in\mathbb{R}^{3}\mid \langle p,a\rangle=c\}$
\end_inset
, la geodésica maximal de
@@ -1579,7 +1579,7 @@ Sean
\end_inset
,
-\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=r^{2}\}$
+\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$
\end_inset
un cilindro,
diff --git a/ggs/n3.lyx b/ggs/n3.lyx
index 4bad339..f553749 100644
--- a/ggs/n3.lyx
+++ b/ggs/n3.lyx
@@ -110,7 +110,7 @@ aplicación exponencial
\end_inset
donde
-\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S:1\in I_{v}\}$
+\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$
\end_inset
.
@@ -909,7 +909,7 @@ Sean
\end_inset
tal que
-\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S:\Vert v\Vert<r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -933,7 +933,7 @@ disco geodésico
\end_inset
cumple que
-\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S:\Vert v\Vert=r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -1099,7 +1099,7 @@ Sean
\end_inset
, luego
-\begin_inset Formula $t_{0}=\max\{t\in[a,b]:\alpha(t)=p_{0}\}<b$
+\begin_inset Formula $t_{0}=\max\{t\in[a,b]\mid \alpha(t)=p_{0}\}<b$
\end_inset
(pues
@@ -1422,7 +1422,7 @@ Finalmente, sea
es
\begin_inset Formula
\[
-A:=\{t\in(a,b):\Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]:\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
+A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid \alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
\]
\end_inset
diff --git a/ggs/n4.lyx b/ggs/n4.lyx
index a8a29a2..f6e22f9 100644
--- a/ggs/n4.lyx
+++ b/ggs/n4.lyx
@@ -258,7 +258,7 @@ Demostración:
\begin_layout Standard
Primero vemos que
-\begin_inset Formula $A:=\{q\in S:\Omega(p,q)\neq\emptyset\}=S$
+\begin_inset Formula $A:=\{q\in S\mid \Omega(p,q)\neq\emptyset\}=S$
\end_inset
viendo que es abierto, cerrado y no vacío.
@@ -750,7 +750,7 @@ Queremos ver que
\end_inset
, existe
-\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]:\alpha(t)\notin D(p,r^{*})\}$
+\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]\mid \alpha(t)\notin D(p,r^{*})\}$
\end_inset
, pero
diff --git a/ggs/n5.lyx b/ggs/n5.lyx
index f56b96a..00374b2 100644
--- a/ggs/n5.lyx
+++ b/ggs/n5.lyx
@@ -229,7 +229,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $A:=\{t\in[0,1]:\tilde{\alpha}(t)=tw\}$
+\begin_inset Formula $A:=\{t\in[0,1]\mid \tilde{\alpha}(t)=tw\}$
\end_inset
, queremos ver que
diff --git a/ggs/n7.lyx b/ggs/n7.lyx
index 0ecec27..142e739 100644
--- a/ggs/n7.lyx
+++ b/ggs/n7.lyx
@@ -273,7 +273,7 @@ soporte
\end_inset
es
-\begin_inset Formula $\text{sop}f:=\overline{\{x\in D:f(x)\neq0\}}$
+\begin_inset Formula $\text{sop}f:=\overline{\{x\in D\mid f(x)\neq0\}}$
\end_inset
.
diff --git a/graf/n1.lyx b/graf/n1.lyx
index c547ff0..921c7d8 100644
--- a/graf/n1.lyx
+++ b/graf/n1.lyx
@@ -119,7 +119,7 @@ grafo no dirigido
\end_inset
definido de forma similar, pero
-\begin_inset Formula $E\subseteq\{S\in{\cal P}(V):|S|\in\{1,2\}\}$
+\begin_inset Formula $E\subseteq\{S\in{\cal P}(V)\mid |S|\in\{1,2\}\}$
\end_inset
es un conjunto de
@@ -136,7 +136,7 @@ ejes
\end_inset
a uno dirigido
-\begin_inset Formula $(V,\{(i,j)\in V\times V:i,j\in E\})$
+\begin_inset Formula $(V,\{(i,j)\in V\times V\mid i,j\in E\})$
\end_inset
.
@@ -340,7 +340,7 @@ grafo complementario
es
\begin_inset Formula
\[
-G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V):|S|=2,S\notin E\}).
+G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\}).
\]
\end_inset
@@ -408,7 +408,7 @@ inducido
\end_inset
, donde
-\begin_inset Formula $E_{V'}:=\{S\in E:S\subseteq V'\}$
+\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$
\end_inset
, y
@@ -680,7 +680,7 @@ teorema
pues
\begin_inset Formula
\[
-\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E:v\in S\}|=\sum_{S\in E}|S|=2|E|.
+\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E\mid v\in S\}|=\sum_{S\in E}|S|=2|E|.
\]
\end_inset
diff --git a/graf/n2.lyx b/graf/n2.lyx
index eb5661f..9d905d7 100644
--- a/graf/n2.lyx
+++ b/graf/n2.lyx
@@ -2145,7 +2145,7 @@ grafo en línea
\end_inset
y
-\begin_inset Formula $E^{L}:=\{(e,f):e\neq f,e\cap f\neq\emptyset\}$
+\begin_inset Formula $E^{L}:=\{(e,f)\mid e\neq f,e\cap f\neq\emptyset\}$
\end_inset
.
diff --git a/graf/n4.lyx b/graf/n4.lyx
index 6674531..5334582 100644
--- a/graf/n4.lyx
+++ b/graf/n4.lyx
@@ -1782,11 +1782,11 @@ Si
.
Sean ahora
-\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}:(u_{i},v)\in E_{k}\}$
+\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}\mid (u_{i},v)\in E_{k}\}$
\end_inset
e
-\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}:(u_{i+1},u)\in E_{k}\}$
+\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}\mid (u_{i+1},u)\in E_{k}\}$
\end_inset
, se tiene
diff --git a/graf/n6.lyx b/graf/n6.lyx
index e296d0b..6bf574a 100644
--- a/graf/n6.lyx
+++ b/graf/n6.lyx
@@ -222,11 +222,11 @@ teorema
\end_inset
,
-\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}:Ax+Gy\leq b\}$
+\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$
\end_inset
y
-\begin_inset Formula $S:=\{[x,y]\in P:x\in\mathbb{Z}^{p}\}$
+\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$
\end_inset
, existen
@@ -242,7 +242,7 @@ teorema
\end_inset
tales que
-\begin_inset Formula $\text{ec}S=\{[x,y]:A'x+G'y\leq b'\}$
+\begin_inset Formula $\text{ec}S=\{[x,y]\mid A'x+G'y\leq b'\}$
\end_inset
.
@@ -253,11 +253,11 @@ teorema
Demostración:
\series default
Sean
-\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}:y\leq\sqrt{2}x,x\geq0,y\geq0\}$
+\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$
\end_inset
y
-\begin_inset Formula $C:=\{(x,y):y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
+\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
\end_inset
.
@@ -406,7 +406,7 @@ Sean
\end_inset
y
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:Ax\leq b\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$
\end_inset
, si
@@ -706,7 +706,7 @@ Lema de Veinott-Dantzig:
\end_inset
,
-\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}:Ax=b,x\geq0\}$
+\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$
\end_inset
es entero.
@@ -913,7 +913,7 @@ Teorema de Hoffman-Kruskal:
\end_inset
, el poliedro
-\begin_inset Formula $\{x\in\mathbb{R}^{n}:Ax\leq b,x\geq0\}$
+\begin_inset Formula $\{x\in\mathbb{R}^{n}\mid Ax\leq b,x\geq0\}$
\end_inset
es entero.
@@ -978,7 +978,7 @@ Dada una submatriz
\end_inset
es unimodular, con lo que
-\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}:Ax+Iy=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$
\end_inset
es entero.
@@ -1003,7 +1003,7 @@ Dada una submatriz
\end_inset
es
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
\end_inset
.
@@ -1069,11 +1069,11 @@ Sean
\end_inset
,
-\begin_inset Formula $P:=\{x:Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$
\end_inset
,
-\begin_inset Formula $Q:=\{[x,y]:Ax+y=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$
\end_inset
y
@@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la
\begin_layout Standard
Para el problema del viajante de comercio sobre una red completa
-\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E:=\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
+\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
\end_inset
, existen varias formulaciones:
@@ -1783,7 +1783,7 @@ es
& \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\
& & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 & & \forall i\\
& & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 & & \forall i\\
- & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\
+ & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\
& & x_{ij} & \in\{0,1\} & & \forall i,j\\
& & u_{i} & \in\mathbb{R}^{>0} & & \forall i
\end{alignat*}
diff --git a/graf/n7.lyx b/graf/n7.lyx
index 04fd675..dc0abb4 100644
--- a/graf/n7.lyx
+++ b/graf/n7.lyx
@@ -850,7 +850,7 @@ regla de Bland:
\end_inset
,
-\begin_inset Formula $F:=\{x:Ax=b,x\geq0\}$
+\begin_inset Formula $F:=\{x\mid Ax=b,x\geq0\}$
\end_inset
y
@@ -888,7 +888,7 @@ Si [...]
\end_inset
es la matriz formada por las columnas añadidas, escribimos
-\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
+\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
\end_inset
y vemos que
@@ -921,7 +921,7 @@ vector de variables artificiales
Método de las dos fases:
\series default
] La primera fase consiste en hallar
-\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
+\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
\end_inset
.
diff --git a/iso/n2.lyx b/iso/n2.lyx
index 4a252fc..724794d 100644
--- a/iso/n2.lyx
+++ b/iso/n2.lyx
@@ -188,6 +188,13 @@ TerminateProcess
en Windows.
\end_layout
+\begin_layout Standard
+\begin_inset Newpage pagebreak
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Estados
\end_layout
@@ -359,7 +366,32 @@ Bloqueado
\begin_inset Quotes frd
\end_inset
-, si el proces, ueado suspendido
+, si el proceso hace una llamada al sistema que no se puede responder inmediatam
+ente.
+\end_layout
+
+\begin_layout Itemize
+De
+\begin_inset Quotes cld
+\end_inset
+
+Bloqueado
+\begin_inset Quotes crd
+\end_inset
+
+ a
+\begin_inset Quotes cld
+\end_inset
+
+Listo
+\begin_inset Quotes crd
+\end_inset
+
+ o de
+\begin_inset Quotes cld
+\end_inset
+
+Bloqueado suspendido
\begin_inset Quotes frd
\end_inset
@@ -435,6 +467,18 @@ Implementación
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
El SO mantiene una
\series bold
tabla de procesos
@@ -464,6 +508,22 @@ administración de procesos
usado de CPU.
\end_layout
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Itemize
Para
\series bold
@@ -882,6 +942,22 @@ Diagrama de Gantt.
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Algoritmos no apropiativos:
\end_layout
@@ -972,6 +1048,22 @@ maduración
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Algoritmos apropiativos:
\end_layout
diff --git a/mc/n1.lyx b/mc/n1.lyx
index 83907a6..a82eb74 100644
--- a/mc/n1.lyx
+++ b/mc/n1.lyx
@@ -489,7 +489,7 @@ Sean
\end_inset
y
-\begin_inset Formula $F'\coloneqq\{r\in Q':r\cap F\neq\emptyset\}$
+\begin_inset Formula $F'\coloneqq\{r\in Q'\mid r\cap F\neq\emptyset\}$
\end_inset
.
@@ -1807,7 +1807,7 @@ Sean
\[
\delta'(q,r)\coloneqq\begin{cases}
\epsilon, & (q,r)=(q_{0},q_{1})\lor(q\in F\land r=q_{\text{F}});\\
-a_{1}\mid\dots\mid a_{k}, & \{a\in\Sigma:r\in\delta(q,a)\}=\{a_{1},\dots,a_{k}\}\neq\emptyset;\\
+a_{1}\mid\dots\mid a_{k}, & \{a\in\Sigma\mid r\in\delta(q,a)\}=\{a_{1},\dots,a_{k}\}\neq\emptyset;\\
\emptyset, & \text{en otro caso}.
\end{cases}
\]
diff --git a/mc/n2.lyx b/mc/n2.lyx
index 758fd91..b7cae20 100644
--- a/mc/n2.lyx
+++ b/mc/n2.lyx
@@ -602,7 +602,7 @@ variable inicial
\end_inset
, donde
-\begin_inset Formula $\{w_{1},\dots,w_{n}\}=\{w:(T,w)\in V\}$
+\begin_inset Formula $\{w_{1},\dots,w_{n}\}=\{w\mid (T,w)\in V\}$
\end_inset
.
@@ -668,7 +668,7 @@ lenguaje generado
\end_inset
es
-\begin_inset Formula $L(G)\coloneqq\{w\in\Sigma^{*}:S\Rightarrow^{*}w\}$
+\begin_inset Formula $L(G)\coloneqq\{w\in\Sigma^{*}\mid S\Rightarrow^{*}w\}$
\end_inset
.
diff --git a/mc/n4.lyx b/mc/n4.lyx
index 3ed5f9d..a4fb314 100644
--- a/mc/n4.lyx
+++ b/mc/n4.lyx
@@ -439,7 +439,7 @@ input
\end_inset
que reconoce
-\begin_inset Formula $K\coloneqq\{\langle{\cal A},w\rangle:\text{la MT \ensuremath{{\cal A}} acepta \ensuremath{w}}\}$
+\begin_inset Formula $K\coloneqq\{\langle{\cal A},w\rangle\mid \text{la MT \ensuremath{{\cal A}} acepta \ensuremath{w}}\}$
\end_inset
.
@@ -1953,7 +1953,7 @@ Algunos lenguajes decidibles:
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{Acc}^{\text{DFA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el DFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
+\begin_inset Formula $\text{Acc}^{\text{DFA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el DFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
\end_inset
.
@@ -2044,7 +2044,7 @@ fun m q0 finals w -> contains (==) (sim m w q0) finals
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Acc}^{\text{NFA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el NFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
+\begin_inset Formula $\text{Acc}^{\text{NFA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el NFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
\end_inset
.
@@ -2275,7 +2275,7 @@ fun (states, syms, m, r0, finals) ->
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{Acc}^{\text{PDA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el PDA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
+\begin_inset Formula $\text{Acc}^{\text{PDA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el PDA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
\end_inset
.
@@ -2322,7 +2322,7 @@ forma normal de Chomsky
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{Empty}^{\text{DFA}}\coloneqq\{\langle{\cal A}\rangle:\text{el DFA }{\cal A}\text{ no acepta ninguna cadena}\}$
+\begin_inset Formula $\text{Empty}^{\text{DFA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el DFA }{\cal A}\text{ no acepta ninguna cadena}\}$
\end_inset
.
@@ -2433,7 +2433,7 @@ fun (trans, q0, finals) -> anystring trans finals nil (cons q0 nil)
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Empty}^{\text{NFA}}\coloneqq\{\langle{\cal A}\rangle:\text{el NFA }{\cal A}\text{ no acepta ninguna cadena}\}$
+\begin_inset Formula $\text{Empty}^{\text{NFA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el NFA }{\cal A}\text{ no acepta ninguna cadena}\}$
\end_inset
.
@@ -2446,7 +2446,7 @@ Análogo.
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Empty}^{\text{PDA}}\coloneqq\{\langle{\cal A}\rangle:\text{el PDA }{\cal A}\text{ no acepta ninguna cadena}\}$
+\begin_inset Formula $\text{Empty}^{\text{PDA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el PDA }{\cal A}\text{ no acepta ninguna cadena}\}$
\end_inset
.
@@ -2610,7 +2610,7 @@ Demostración:
\end_inset
, sea
-\begin_inset Formula $B\coloneqq\{x\in A:x\notin f(x)\}$
+\begin_inset Formula $B\coloneqq\{x\in A\mid x\notin f(x)\}$
\end_inset
, existe
@@ -2767,7 +2767,7 @@ status open
\begin_layout Standard
\begin_inset Formula
\[
-K\coloneqq\{\langle{\cal M},w\rangle:\text{la MT }{\cal M}\text{ acepta con entrada }w\}\in{\cal RE}\setminus{\cal DEC}.
+K\coloneqq\{\langle{\cal M},w\rangle\mid \text{la MT }{\cal M}\text{ acepta con entrada }w\}\in{\cal RE}\setminus{\cal DEC}.
\]
\end_inset
@@ -2806,7 +2806,7 @@ Demostración:
\end_inset
que decide
-\begin_inset Formula $\{\langle{\cal M}\rangle:{\cal H}\text{ rechaza }\langle{\cal M},\langle{\cal M}\rangle\rangle\}$
+\begin_inset Formula $\{\langle{\cal M}\rangle\mid {\cal H}\text{ rechaza }\langle{\cal M},\langle{\cal M}\rangle\rangle\}$
\end_inset
, pero entonces
diff --git a/mc/n5.lyx b/mc/n5.lyx
index a32f40d..03d0675 100644
--- a/mc/n5.lyx
+++ b/mc/n5.lyx
@@ -327,7 +327,7 @@ Problema de la parada.
\begin_inset Formula
\[
-\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle:{\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}.
+\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle\mid {\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}.
\]
\end_inset
@@ -380,7 +380,7 @@ mapping
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$
+\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle\mid {\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$
\end_inset
.
@@ -454,7 +454,7 @@ mapping
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle:{\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$
+\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle\mid {\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$
\end_inset
.
@@ -674,7 +674,7 @@ Teorema de Rice:
no trivial,
\begin_inset Formula
\[
-{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}.
+{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle\mid {\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}.
\]
\end_inset
diff --git a/mc/n7.lyx b/mc/n7.lyx
index d5dc724..2c77bac 100644
--- a/mc/n7.lyx
+++ b/mc/n7.lyx
@@ -1113,7 +1113,7 @@ Están en
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{RELPRIM}\coloneqq\{\langle x,y\rangle:x,y\in\mathbb{N}\text{ son primos relativos}\}$
+\begin_inset Formula $\text{RELPRIM}\coloneqq\{\langle x,y\rangle\mid x,y\in\mathbb{N}\text{ son primos relativos}\}$
\end_inset
.
@@ -1192,7 +1192,7 @@ noprefix "false"
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{PATH}\coloneqq\{\langle G,s,t\rangle:G\text{ es un grafo dirigido con un camino de }s\text{ a }t\}$
+\begin_inset Formula $\text{PATH}\coloneqq\{\langle G,s,t\rangle\mid G\text{ es un grafo dirigido con un camino de }s\text{ a }t\}$
\end_inset
.
@@ -1251,7 +1251,7 @@ Se añade el nodo
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{4-CLIQUE}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido con una 4-clique}\}$
+\begin_inset Formula $\text{4-CLIQUE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido con una 4-clique}\}$
\end_inset
.
@@ -1287,7 +1287,7 @@ Si
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{EULCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo dirigido con un ciclo euleriano}\}$
+\begin_inset Formula $\text{EULCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo dirigido con un ciclo euleriano}\}$
\end_inset
.
@@ -1317,7 +1317,7 @@ Un teorema de Euler dice que un grafo dirigido
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{2-COLOR}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido bipartito}\}$
+\begin_inset Formula $\text{2-COLOR}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido bipartito}\}$
\end_inset
.
@@ -1562,7 +1562,7 @@ verificador
\end_inset
tal que
-\begin_inset Formula $L=\{w:\exists c:V\text{ acepta }\langle w,c\rangle\}$
+\begin_inset Formula $L=\{w\mid \exists c\mid V\text{ acepta }\langle w,c\rangle\}$
\end_inset
.
diff --git a/mc/n8.lyx b/mc/n8.lyx
index 97f0b4f..8f2b855 100644
--- a/mc/n8.lyx
+++ b/mc/n8.lyx
@@ -408,7 +408,7 @@ satisfacible
Definimos
\begin_inset Formula
\[
-\text{SAT}\coloneqq\text{SAT}_{0}\coloneqq\text{SAT}_{\text{LP}}\coloneqq\{\langle\Phi\rangle:\Phi\text{ es una fórmula booleana satisfacible}\}.
+\text{SAT}\coloneqq\text{SAT}_{0}\coloneqq\text{SAT}_{\text{LP}}\coloneqq\{\langle\Phi\rangle\mid \Phi\text{ es una fórmula booleana satisfacible}\}.
\]
\end_inset
@@ -1039,7 +1039,7 @@ Son
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{CLIQUE}\coloneqq\{\langle G,k\rangle:G\text{ es grafo no dirigido con }k\text{-clique}\}$
+\begin_inset Formula $\text{CLIQUE}\coloneqq\{\langle G,k\rangle\mid G\text{ es grafo no dirigido con }k\text{-clique}\}$
\end_inset
.
@@ -1209,7 +1209,7 @@ La función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{HAMPATH}\coloneqq\{\langle G,s,t\rangle:G\text{ es un grafo dirigido con camino hamiltoniano de }s\text{ a }t\}$
+\begin_inset Formula $\text{HAMPATH}\coloneqq\{\langle G,s,t\rangle\mid G\text{ es un grafo dirigido con camino hamiltoniano de }s\text{ a }t\}$
\end_inset
.
@@ -1607,7 +1607,7 @@ La función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{HAMCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo dirigido con un ciclo hamiltoniano}\}$
+\begin_inset Formula $\text{HAMCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo dirigido con un ciclo hamiltoniano}\}$
\end_inset
.
@@ -1765,7 +1765,7 @@ La función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{UHAMCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido con un ciclo hamiltoniano}\}$
+\begin_inset Formula $\text{UHAMCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido con un ciclo hamiltoniano}\}$
\end_inset
.
@@ -2011,7 +2011,7 @@ Claramente la función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{COLOR}\coloneqq\{\langle G,k\rangle:G\text{ es un grafo no dirigido }k\text{-coloreable}\}$
+\begin_inset Formula $\text{COLOR}\coloneqq\{\langle G,k\rangle\mid G\text{ es un grafo no dirigido }k\text{-coloreable}\}$
\end_inset
.
@@ -2277,7 +2277,7 @@ Un ciclo hamiltoniano en
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{SUBSET-SUM}\coloneqq\{\langle S,t\rangle:S\text{ es una lista de naturales con una subsecuencia que suma }t\}.$
+\begin_inset Formula $\text{SUBSET-SUM}\coloneqq\{\langle S,t\rangle\mid S\text{ es una lista de naturales con una subsecuencia que suma }t\}.$
\end_inset
@@ -2605,7 +2605,7 @@ ión, pero calcular las potencias de 10 corresponde a multiplicar por 10
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{VERTEX-COVER}\coloneqq\{\langle G,k\rangle:G\text{ es un grafo no dirigido con una }k\text{-cobertura}\}$
+\begin_inset Formula $\text{VERTEX-COVER}\coloneqq\{\langle G,k\rangle\mid G\text{ es un grafo no dirigido con una }k\text{-cobertura}\}$
\end_inset
.
diff --git a/mne/n2.lyx b/mne/n2.lyx
index d50ba1f..44b1b3a 100644
--- a/mne/n2.lyx
+++ b/mne/n2.lyx
@@ -241,7 +241,7 @@ con
para dicho problema con redondeo, dado por
\begin_inset Formula
\[
-\left\{ \begin{aligned}\omega_{0} & :=x_{0}+\delta_{0},\\
+\left\{ \begin{aligned}\omega_{0} & \mid =x_{0}+\delta_{0},\\
\omega_{i+1} & :=\omega_{i}+hf(t_{i},\omega_{i})+\delta_{i+1},
\end{aligned}
\right.
diff --git a/mne/n5.lyx b/mne/n5.lyx
index 98aa9a9..79f6ad9 100644
--- a/mne/n5.lyx
+++ b/mne/n5.lyx
@@ -240,7 +240,7 @@ región de estabilidad absoluta
\end_inset
,
-\begin_inset Formula $R=\{z\in\mathbb{C}:|Q(z)|<1\}$
+\begin_inset Formula $R=\{z\in\mathbb{C}\mid |Q(z)|<1\}$
\end_inset
, y para uno multipaso que converge cuando cada
@@ -248,7 +248,7 @@ región de estabilidad absoluta
\end_inset
, es
-\begin_inset Formula $R=\{z\in\mathbb{C}:|\beta_{i}|<1,\forall i\}$
+\begin_inset Formula $R=\{z\in\mathbb{C}\mid |\beta_{i}|<1,\forall i\}$
\end_inset
.
@@ -272,7 +272,7 @@ Hay que tener en cuenta la región de estabilidad antes de considerar un
A-estable
\series default
si
-\begin_inset Formula $\{z\in\mathbb{C}:\text{Re}z<0\}\subseteq R$
+\begin_inset Formula $\{z\in\mathbb{C}\mid \text{Re}z<0\}\subseteq R$
\end_inset
.
diff --git a/pcd/n.pdf b/pcd/n.pdf
deleted file mode 100644
index 1b7678e..0000000
--- a/pcd/n.pdf
+++ /dev/null
Binary files differ
diff --git a/pds/n3.lyx b/pds/n3.lyx
index a50d72d..fa5aed6 100644
--- a/pds/n3.lyx
+++ b/pds/n3.lyx
@@ -421,7 +421,7 @@ Dada una asociación
\end_inset
es el conjunto de posibles valores de
-\begin_inset Formula $|\{a_{i}\in C_{i}:(a_{1},\dots,a_{n})\in R\}|$
+\begin_inset Formula $|\{a_{i}\in C_{i}\mid (a_{1},\dots,a_{n})\in R\}|$
\end_inset
para cada
diff --git a/rc/n.pdf b/rc/n.pdf
deleted file mode 100644
index e01c446..0000000
--- a/rc/n.pdf
+++ /dev/null
Binary files differ
diff --git a/si/n2.lyx b/si/n2.lyx
index 8971dd3..946c8e4 100644
--- a/si/n2.lyx
+++ b/si/n2.lyx
@@ -269,7 +269,7 @@ Y-O
\end_inset
, sea
-\begin_inset Formula $N:=\{S\subseteq V:(u,S)\in A\}$
+\begin_inset Formula $N:=\{S\subseteq V\mid (u,S)\in A\}$
\end_inset
,
@@ -315,7 +315,7 @@ primitiva
árbol Y/O
\series default
es un grafo Y/O para el que el grafo no dirigido
-\begin_inset Formula $(V,\{(u,v)\in V\times V:\exists(u,S)\in A:v\in S\})$
+\begin_inset Formula $(V,\{(u,v)\in V\times V\mid \exists(u,S)\in A\mid v\in S\})$
\end_inset
es acíclico.
diff --git a/si/n3.lyx b/si/n3.lyx
index 91b18ae..ba20d3d 100644
--- a/si/n3.lyx
+++ b/si/n3.lyx
@@ -145,7 +145,7 @@ Podemos representar un problema de búsqueda en un espacio de estados como
\end_inset
,
-\begin_inset Formula $\{w\in V:(v,w)\in A\}$
+\begin_inset Formula $\{w\in V\mid (v,w)\in A\}$
\end_inset
es finito y recursivamente enumerable a partir de
@@ -1224,7 +1224,7 @@ Podemos representar un problema de reducción como una tupla
\end_inset
contable y tanto
-\begin_inset Formula $\{S\subseteq V:(u,S)\in V\}$
+\begin_inset Formula $\{S\subseteq V\mid (u,S)\in V\}$
\end_inset
como cada uno de sus elementos finito y recursivamente enumerable a partir
diff --git a/si/n5.lyx b/si/n5.lyx
index a449826..71f6843 100644
--- a/si/n5.lyx
+++ b/si/n5.lyx
@@ -685,7 +685,7 @@ En lógica de predicados, a todo predicado
\end_inset
le corresponde un conjunto
-\begin_inset Formula $\{x\in U:P(x)\}$
+\begin_inset Formula $\{x\in U\mid P(x)\}$
\end_inset
y una
diff --git a/si/n7.lyx b/si/n7.lyx
index f8678f6..b20a18e 100644
--- a/si/n7.lyx
+++ b/si/n7.lyx
@@ -449,7 +449,7 @@ soporte
\end_inset
es
-\begin_inset Formula $s(Z):=\frac{|\{e\in D:Z\subseteq e\}|}{|D|}$
+\begin_inset Formula $s(Z):=\frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$
\end_inset
; la
@@ -490,7 +490,7 @@ cobertura
.
Las diapositivas usan la notación de mierda
-\begin_inset Formula $|X|:=|\{e\in D:X\subseteq e\}|$
+\begin_inset Formula $|X|:=|\{e\in D\mid X\subseteq e\}|$
\end_inset
.
diff --git a/tem/n1.lyx b/tem/n1.lyx
index 63ebf66..39659d7 100644
--- a/tem/n1.lyx
+++ b/tem/n1.lyx
@@ -406,7 +406,7 @@ La
topología cofinita
\series default
:
-\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X:X\backslash A\text{ es finito}\}$
+\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X\mid X\backslash A\text{ es finito}\}$
\end_inset
.
@@ -1381,7 +1381,7 @@ círculo
\end_inset
es el conjunto
-\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X:d(p,x)=r\}$
+\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$
\end_inset
.
@@ -1402,7 +1402,7 @@ bola abierta
\end_inset
es el conjunto
-\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X:d(p,x)<r\}$
+\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$
\end_inset
, y la
@@ -1422,7 +1422,7 @@ bola cerrada
\end_inset
es el conjunto
-\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X:d(p,x)\leq r\}$
+\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$
\end_inset
.
diff --git a/tem/n2.lyx b/tem/n2.lyx
index 02c4d59..912a7be 100644
--- a/tem/n2.lyx
+++ b/tem/n2.lyx
@@ -110,7 +110,7 @@ adherencia
denota
\begin_inset Formula
\[
-\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}:S\subseteq C\}
+\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}\mid S\subseteq C\}
\]
\end_inset
@@ -709,7 +709,7 @@ interior
, y se denota
\begin_inset Formula
\[
-\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}:A\subseteq S\}
+\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}\mid A\subseteq S\}
\]
\end_inset
@@ -1160,7 +1160,7 @@ Sea
\end_inset
, entonces
-\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
+\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
\end_inset
.
@@ -1249,7 +1249,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
+\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
\end_inset
, y
@@ -1257,7 +1257,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$
+\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S\mid x_{n},y_{n}\rightarrow x$
\end_inset
.
diff --git a/tem/n3.lyx b/tem/n3.lyx
index 245e95c..35cc0dc 100644
--- a/tem/n3.lyx
+++ b/tem/n3.lyx
@@ -245,7 +245,7 @@ De aquí que
Demostración:
\series default
Tomando
-\begin_inset Formula ${\cal B}(p)=\{B(p;\delta):\delta>0\}$
+\begin_inset Formula ${\cal B}(p)=\{B(p;\delta)\mid \delta>0\}$
\end_inset
y
diff --git a/tem/n4.lyx b/tem/n4.lyx
index 574a4a5..2f3a2e7 100644
--- a/tem/n4.lyx
+++ b/tem/n4.lyx
@@ -369,7 +369,7 @@ Demostración:
\end_inset
y definimos
-\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
+\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A})\mid [a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
\end_inset
.
diff --git a/ts/n1.lyx b/ts/n1.lyx
index 8874cc3..4936758 100644
--- a/ts/n1.lyx
+++ b/ts/n1.lyx
@@ -268,7 +268,7 @@ entorno
\end_inset
es un elemento de
-\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}:x\in{\cal U}\}$
+\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$
\end_inset
.
@@ -459,7 +459,7 @@ abierta
a
\begin_inset Formula
\[
-B_{d}(x,\delta):=\{y\in X:d(x,y)<\varepsilon\}.
+B_{d}(x,\delta):=\{y\in X\mid d(x,y)<\varepsilon\}.
\]
\end_inset
@@ -485,7 +485,7 @@ inducida
\end_inset
a la topología
-\begin_inset Formula ${\cal T}_{d}:=\{A\in X:\forall x\in A,\exists\delta>0:B_{d}(x,\delta)\subseteq A\}$
+\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$
\end_inset
.
@@ -578,7 +578,7 @@ La
-esfera
\series default
,
-\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}:x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
+\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
\end_inset
.
@@ -630,7 +630,7 @@ El
cilindro
\series default
,
-\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=1,0\leq z\leq1\}$
+\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$
\end_inset
, cono de rotación sobre el eje
@@ -666,7 +666,7 @@ El
toro
\series default
,
-\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
+\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
\end_inset
, cono de rotación sobre el eje
@@ -674,7 +674,7 @@ toro
\end_inset
de
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}$
\end_inset
.
@@ -695,7 +695,7 @@ status open
\end_inset
Tenemos
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}=\{\alpha(s):=(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
\end_inset
, luego el cono de rotación es
@@ -1056,7 +1056,7 @@ Como los abiertos en
\end_inset
,
-\begin_inset Formula $s^{-1}((a,b))=\{(x,y):a<s(x,y)=x+y<b\}=\{(x,y):a-x<y<b-x\}$
+\begin_inset Formula $s^{-1}((a,b))=\{(x,y)\mid a<s(x,y)=x+y<b\}=\{(x,y)\mid a-x<y<b-x\}$
\end_inset
.
@@ -1135,7 +1135,7 @@ Dado
\end_inset
, queremos ver que
-\begin_inset Formula $p^{-1}((a,b))=\{(x,y):a<p(x,y)=xy<b\}$
+\begin_inset Formula $p^{-1}((a,b))=\{(x,y)\mid a<p(x,y)=xy<b\}$
\end_inset
es abierto.
@@ -1217,7 +1217,7 @@ Basta ver que, dada una bola
, su inversa es un abierto.
Tenemos
-\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x:d_{\infty}((x,\dots,x),y)<r\}=\{t:|x-y_{1}|,\dots,|x-y_{n}|<r\}$
+\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid |x-y_{1}|,\dots,|x-y_{n}|<r\}$
\end_inset
, pero
@@ -2043,7 +2043,7 @@ topología generada
\end_inset
a
-\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X:\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U\}$
+\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$
\end_inset
, y se tiene que
@@ -2456,7 +2456,7 @@ Dada una base
\end_inset
numerable,
-\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}:x\in B\}$
+\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}\mid x\in B\}$
\end_inset
es base de entornos de
diff --git a/ts/n2.lyx b/ts/n2.lyx
index b70277e..583d4b7 100644
--- a/ts/n2.lyx
+++ b/ts/n2.lyx
@@ -1125,7 +1125,7 @@ Ejemplos de conexión
\begin_layout Enumerate
La hipérbola
-\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}-y^{2}=1\}$
+\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}-y^{2}=1\}$
\end_inset
no es conexa.
@@ -1134,11 +1134,11 @@ status open
\begin_layout Plain Layout
Sean
-\begin_inset Formula $U:=\{(x,y):x>0\}$
+\begin_inset Formula $U:=\{(x,y)\mid x>0\}$
\end_inset
,
-\begin_inset Formula $V:=\{(x,y):x<0\}$
+\begin_inset Formula $V:=\{(x,y)\mid x<0\}$
\end_inset
e
@@ -1150,7 +1150,7 @@ Sean
\end_inset
, luego
-\begin_inset Formula $Y\subseteq U\cap V=\{(x,y):x\neq0\}$
+\begin_inset Formula $Y\subseteq U\cap V=\{(x,y)\mid x\neq0\}$
\end_inset
;
@@ -1351,7 +1351,7 @@ La función
status open
\begin_layout Plain Layout
-\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\neq0\}$
+\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\neq0\}$
\end_inset
, luego existe la función continua
@@ -1372,7 +1372,7 @@ status open
.
-\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\in\{-1,1\}\}$
+\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\in\{-1,1\}\}$
\end_inset
, luego
@@ -2393,7 +2393,7 @@ Sea
.
Ahora bien,
-\begin_inset Formula $\{U_{\delta}:=(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$
+\begin_inset Formula $\{U_{\delta}\mid =(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$
\end_inset
es un recubrimiento de
@@ -2750,7 +2750,7 @@ Sea
\end_inset
continua,
-\begin_inset Formula $\text{fix}f:=\{x\in X:f(x)=x\}$
+\begin_inset Formula $\text{fix}f:=\{x\in X\mid f(x)=x\}$
\end_inset
es cerrado en
diff --git a/ts/n3.lyx b/ts/n3.lyx
index 5674436..8443b38 100644
--- a/ts/n3.lyx
+++ b/ts/n3.lyx
@@ -309,7 +309,7 @@ Sean
status open
\begin_layout Plain Layout
-\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$
+\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$
\end_inset
y
@@ -736,7 +736,7 @@ unión disjunta
\end_inset
son espacios topológicos, definimos la topología
-\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$
+\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$
\end_inset
.
@@ -934,7 +934,7 @@ Sea
\end_inset
,
-\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$
+\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$
\end_inset
lo es de
@@ -947,7 +947,7 @@ Sea
.
Del mismo modo
-\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$
+\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$
\end_inset
admite un subrecubrimiento finito
@@ -1122,11 +1122,11 @@ Sean
\end_inset
disjuntos, y basta tomar
-\begin_inset Formula $\{x:(x,0)\in U\}$
+\begin_inset Formula $\{x\mid (x,0)\in U\}$
\end_inset
y
-\begin_inset Formula $\{x:(x,0)\in V\}$
+\begin_inset Formula $\{x\mid (x,0)\in V\}$
\end_inset
.
@@ -1449,7 +1449,7 @@ Dado un abierto
\end_inset
,
-\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$
+\begin_inset Formula $a^{-1}(U)=\{x\in X\mid a(x)\in U\}=f^{-1}(U\times Y)$
\end_inset
, que es abierto por la hipótesis.
@@ -1479,7 +1479,7 @@ Dado un elemento básico
\end_inset
,
-\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
+\begin_inset Formula $f^{-1}(U\times)=\{x\in X\mid a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
\end_inset
, que es abierto.
@@ -2269,7 +2269,7 @@ Sean
\end_inset
, sea
-\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$
+\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$
\end_inset
,
@@ -2360,7 +2360,7 @@ topología cociente
\end_inset
a
-\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$
+\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$
\end_inset
, donde
@@ -2832,7 +2832,7 @@ Si
\end_inset
es Hausdorff si y sólo si
-\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$
+\begin_inset Formula $\{(x,y)\in X\times X\mid x\sim y\}$
\end_inset
es cerrado en
diff --git a/ts/n4.lyx b/ts/n4.lyx
index c315d68..3a63435 100644
--- a/ts/n4.lyx
+++ b/ts/n4.lyx
@@ -747,7 +747,7 @@ El recíproco no se cumple:
\begin_layout Enumerate
La corona circular
-\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}+y^{2}\in[0,1]\}$
+\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}+y^{2}\in[0,1]\}$
\end_inset
es homotópicamente equivalente, pero no homeomorfa, a
diff --git a/ts/n6.lyx b/ts/n6.lyx
index d2acc6e..c61ae70 100644
--- a/ts/n6.lyx
+++ b/ts/n6.lyx
@@ -258,7 +258,7 @@ envoltura convexa
,
\begin_inset Formula
\[
-\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}:\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} .
+\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}\;\middle|\;\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} .
\]
\end_inset
@@ -520,6 +520,22 @@ dimensión
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Ejemplos:
\end_layout
@@ -578,6 +594,22 @@ Añadir dibujos.
\end_layout
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Número de Euler
\end_layout