diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 21:12:22 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 21:12:22 +0100 |
| commit | 214b20d1614b09cd5c18e111df0f0d392af2e721 (patch) | |
| tree | 18e6ded17b7fe84129ebfe5149c9f77dd307d226 | |
| parent | 43e23cdd2ae85a634c4d5c8d921cc671738682bf (diff) | |
Cambios estéticos y de compatibilidad (ver mensaje)
* Cambiado globalmente el formato de los conjuntos por comprehensión de la
notación con ":" a la más común con "|".
* Cambiado el formato de "|" en los conjuntos definidos con \left\{ y \right\}
para que la barra vertical sea tan grande como las llaves.
* Cambiado grafo del tema 4 de AED I de formato SVG a raster.
Antes de esto no compilaba porque ImageMagick tiene desactivada por seguridad
la conversión que LyX necesita para representar imágenes SVG. Se mantiene la
versión SVG en el repositorio por si fuera necesaria en el futuro.
* Cambiadas imágenes de puertas lógicas del tema 3 de FC a su versión PDF.
Antes se usaba la versión SVG, que causa los mismos problemas.
* Cambiadas imágenes en los apuntes de FC para que se miren como figuras.
* Marcadas algunas partes de BBDD como idioma inglés debido a fallos en LaTeX o
algunos paquetes cuando el idioma no es inglés. No afecta a la presentación.
* Añadidos saltos de línea donde hacía falta de los apuntes de ISO.
* Corregida referencia en tema 1 AC: ga -> GyA.
| -rw-r--r-- | aalg/n1.lyx | 4 | ||||
| -rw-r--r-- | aalg/n2.lyx | 2 | ||||
| -rw-r--r-- | aalg/n3.lyx | 10 | ||||
| -rw-r--r-- | aalg/n4.lyx | 6 | ||||
| -rw-r--r-- | ac/n1.lyx | 48 | ||||
| -rw-r--r-- | ac/n2.lyx | 14 | ||||
| -rw-r--r-- | ac/n3.lyx | 8 | ||||
| -rwxr-xr-x | aec/n.pdf | bin | 455610 -> 0 bytes | |||
| -rw-r--r-- | aed1/graph.eps | bin | 0 -> 10750 bytes | |||
| -rw-r--r-- | aed1/n2.lyx | 4 | ||||
| -rw-r--r-- | aed1/n4.lyx | 29 | ||||
| -rw-r--r-- | aed2/n.pdf | bin | 588738 -> 0 bytes | |||
| -rw-r--r-- | af/n1.lyx | 8 | ||||
| -rw-r--r-- | algl/n1.lyx | 10 | ||||
| -rw-r--r-- | algl/n4.lyx | 2 | ||||
| -rw-r--r-- | algl/n5.lyx | 2 | ||||
| -rw-r--r-- | anm/n1.lyx | 26 | ||||
| -rw-r--r-- | anm/n2.lyx | 2 | ||||
| -rw-r--r-- | anm/n3.lyx | 2 | ||||
| -rw-r--r-- | anm/na.lyx | 2 | ||||
| -rw-r--r-- | aoc/n3.lyx | 2 | ||||
| -rwxr-xr-x | ar/n.pdf | bin | 265682 -> 0 bytes | |||
| -rw-r--r-- | bd/n5.lyx | 21 | ||||
| -rw-r--r-- | bd/n6.lyx | 14 | ||||
| -rw-r--r-- | bd/n7.lyx | 4 | ||||
| -rw-r--r-- | cc/n1.lyx | 2 | ||||
| -rw-r--r-- | cc/n3.lyx | 10 | ||||
| -rwxr-xr-x | cn/n.pdf | bin | 326312 -> 0 bytes | |||
| -rw-r--r-- | cyn/n1.lyx | 12 | ||||
| -rw-r--r-- | cyn/n2.lyx | 10 | ||||
| -rw-r--r-- | cyn/n4.lyx | 2 | ||||
| -rw-r--r-- | cyn/n5.lyx | 2 | ||||
| -rw-r--r-- | cyn/n7.lyx | 10 | ||||
| -rw-r--r-- | cyn/n8.lyx | 2 | ||||
| -rw-r--r-- | ealg/n1.lyx | 12 | ||||
| -rw-r--r-- | ealg/n2.lyx | 2 | ||||
| -rw-r--r-- | ealg/n4.lyx | 8 | ||||
| -rw-r--r-- | ealg/n5.lyx | 2 | ||||
| -rw-r--r-- | ealg/n6.lyx | 6 | ||||
| -rw-r--r-- | ealg/n7.lyx | 8 | ||||
| -rw-r--r-- | edo/n.pdf | bin | 531210 -> 0 bytes | |||
| -rw-r--r-- | epe/n.pdf | bin | 509398 -> 0 bytes | |||
| -rw-r--r-- | fc/AND_ANSI_Labelled.svg | bin | 6374 -> 4971 bytes | |||
| -rw-r--r-- | fc/NAND_ANSI_Labelled.svg | bin | 6769 -> 5038 bytes | |||
| -rw-r--r-- | fc/NOR_ANSI_Labelled.svg | bin | 6895 -> 5125 bytes | |||
| -rw-r--r-- | fc/Not-gate-en.svg | bin | 3508 -> 8263 bytes | |||
| -rw-r--r-- | fc/OR_ANSI_Labelled.svg | bin | 6461 -> 5064 bytes | |||
| -rw-r--r-- | fc/XOR_ANSI.svg | bin | 5376 -> 4961 bytes | |||
| -rw-r--r-- | fc/Xnor-gate-en.svg | bin | 4676 -> 9716 bytes | |||
| -rw-r--r-- | fc/n1.lyx | 51 | ||||
| -rw-r--r-- | fc/n3.lyx | 133 | ||||
| -rw-r--r-- | fli/n6.lyx | 8 | ||||
| -rw-r--r-- | fuvr1/n1.lyx | 30 | ||||
| -rw-r--r-- | fuvr1/n2.lyx | 20 | ||||
| -rw-r--r-- | fuvr1/n3.lyx | 2 | ||||
| -rw-r--r-- | fuvr2/n1.lyx | 2 | ||||
| -rw-r--r-- | fuvr2/n2.lyx | 2 | ||||
| -rw-r--r-- | fuvr2/n3.lyx | 2 | ||||
| -rw-r--r-- | fvc/n2.lyx | 4 | ||||
| -rw-r--r-- | fvc/n3.lyx | 10 | ||||
| -rw-r--r-- | fvc/n4.lyx | 12 | ||||
| -rw-r--r-- | fvv1/n1.lyx | 4 | ||||
| -rw-r--r-- | fvv1/n2.lyx | 2 | ||||
| -rw-r--r-- | fvv1/n3.lyx | 2 | ||||
| -rw-r--r-- | fvv1/n4.lyx | 4 | ||||
| -rw-r--r-- | fvv2/n1.lyx | 10 | ||||
| -rw-r--r-- | fvv2/n2.lyx | 6 | ||||
| -rw-r--r-- | fvv2/n3.lyx | 16 | ||||
| -rw-r--r-- | fvv2/n4.lyx | 2 | ||||
| -rw-r--r-- | fvv3/n.pdf | bin | 426980 -> 0 bytes | |||
| -rw-r--r-- | ga/n1.lyx | 18 | ||||
| -rw-r--r-- | ga/n2.lyx | 4 | ||||
| -rw-r--r-- | ga/n3.lyx | 12 | ||||
| -rw-r--r-- | ga/n4.lyx | 20 | ||||
| -rw-r--r-- | ga/n5.lyx | 6 | ||||
| -rw-r--r-- | ga/n6.lyx | 2 | ||||
| -rw-r--r-- | gae/n2.lyx | 6 | ||||
| -rw-r--r-- | gcs/n1.lyx | 4 | ||||
| -rw-r--r-- | gcs/n2.lyx | 6 | ||||
| -rw-r--r-- | gcs/n3.lyx | 8 | ||||
| -rw-r--r-- | ggs/n2.lyx | 8 | ||||
| -rw-r--r-- | ggs/n3.lyx | 10 | ||||
| -rw-r--r-- | ggs/n4.lyx | 4 | ||||
| -rw-r--r-- | ggs/n5.lyx | 2 | ||||
| -rw-r--r-- | ggs/n7.lyx | 2 | ||||
| -rw-r--r-- | graf/n1.lyx | 10 | ||||
| -rw-r--r-- | graf/n2.lyx | 2 | ||||
| -rw-r--r-- | graf/n4.lyx | 4 | ||||
| -rw-r--r-- | graf/n6.lyx | 28 | ||||
| -rw-r--r-- | graf/n7.lyx | 6 | ||||
| -rw-r--r-- | iso/n2.lyx | 94 | ||||
| -rw-r--r-- | mc/n1.lyx | 4 | ||||
| -rw-r--r-- | mc/n2.lyx | 4 | ||||
| -rw-r--r-- | mc/n4.lyx | 20 | ||||
| -rw-r--r-- | mc/n5.lyx | 8 | ||||
| -rw-r--r-- | mc/n7.lyx | 12 | ||||
| -rw-r--r-- | mc/n8.lyx | 16 | ||||
| -rw-r--r-- | mne/n2.lyx | 2 | ||||
| -rw-r--r-- | mne/n5.lyx | 6 | ||||
| -rw-r--r-- | pcd/n.pdf | bin | 406994 -> 0 bytes | |||
| -rw-r--r-- | pds/n3.lyx | 2 | ||||
| -rw-r--r-- | rc/n.pdf | bin | 489661 -> 0 bytes | |||
| -rw-r--r-- | si/n2.lyx | 4 | ||||
| -rw-r--r-- | si/n3.lyx | 4 | ||||
| -rw-r--r-- | si/n5.lyx | 2 | ||||
| -rw-r--r-- | si/n7.lyx | 4 | ||||
| -rw-r--r-- | tem/n1.lyx | 8 | ||||
| -rw-r--r-- | tem/n2.lyx | 10 | ||||
| -rw-r--r-- | tem/n3.lyx | 2 | ||||
| -rw-r--r-- | tem/n4.lyx | 2 | ||||
| -rw-r--r-- | ts/n1.lyx | 26 | ||||
| -rw-r--r-- | ts/n2.lyx | 16 | ||||
| -rw-r--r-- | ts/n3.lyx | 22 | ||||
| -rw-r--r-- | ts/n4.lyx | 2 | ||||
| -rw-r--r-- | ts/n6.lyx | 34 |
115 files changed, 694 insertions, 402 deletions
diff --git a/aalg/n1.lyx b/aalg/n1.lyx index 520ce4b..a783d88 100644 --- a/aalg/n1.lyx +++ b/aalg/n1.lyx @@ -1235,7 +1235,7 @@ Demostración: en común, los tres puntos estarían alineados. Así, podemos tomar -\begin_inset Formula $\{O\}:=m\cap m'$ +\begin_inset Formula $\{O\}\mid =m\cap m'$ \end_inset y entonces @@ -2296,7 +2296,7 @@ hemisferio norte \end_inset de la hipérbola ( -\begin_inset Formula $\{(x,y)\in{\cal H}:y\geq0\}$ +\begin_inset Formula $\{(x,y)\in{\cal H}\mid y\geq0\}$ \end_inset ), dado por diff --git a/aalg/n2.lyx b/aalg/n2.lyx index 94fb772..d6c0241 100644 --- a/aalg/n2.lyx +++ b/aalg/n2.lyx @@ -338,7 +338,7 @@ Los vectores propios de . Así, -\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$ +\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$ \end_inset es el diff --git a/aalg/n3.lyx b/aalg/n3.lyx index d0e0932..a6df369 100644 --- a/aalg/n3.lyx +++ b/aalg/n3.lyx @@ -1883,7 +1883,7 @@ Sean \end_inset y -\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):f(x,y)=0\}$ +\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid f(x,y)=0\}$ \end_inset , llamamos @@ -1899,7 +1899,7 @@ completación proyectiva \end_inset a -\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K}):f^{*}(x,y,z)=0\}$ +\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K})\mid f^{*}(x,y,z)=0\}$ \end_inset , y para @@ -1915,7 +1915,7 @@ parte afín \end_inset es -\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):<(x,y,1)>\in\hat{{\cal L}}\}$ +\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid <(x,y,1)>\in\hat{{\cal L}}\}$ \end_inset . @@ -1928,12 +1928,12 @@ parte afín \end_inset , -\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y):F(x,y,1)=0\}=\{(x,y):F_{*}(x,y)=0\}$ +\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y)\mid F(x,y,1)=0\}=\{(x,y)\mid F_{*}(x,y)=0\}$ \end_inset . Entonces -\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>:(F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>:F(x,y,0)=0\}$ +\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>\mid (F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>\mid F(x,y,0)=0\}$ \end_inset , y si diff --git a/aalg/n4.lyx b/aalg/n4.lyx index 11a1a77..96b456a 100644 --- a/aalg/n4.lyx +++ b/aalg/n4.lyx @@ -827,7 +827,7 @@ subespacio ortogonal \end_inset al subespacio -\begin_inset Formula $E^{\bot}:=\{v\in V:\forall e\in E,\langle v,e\rangle=0\}$ +\begin_inset Formula $E^{\bot}:=\{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$ \end_inset . @@ -3827,7 +3827,7 @@ cónica proyectiva \end_inset , o de formas cuadráticas no nulas de dimensión 3, bajo la relación -\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$ +\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}\mid q'=\lambda q$ \end_inset . @@ -3975,7 +3975,7 @@ recta polar \end_inset a -\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K}):[P]^{t}\overline{A}[X]=0\}$ +\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$ \end_inset , y decimos que @@ -799,7 +799,7 @@ status open \backslash -begin{reminder}{ga} +begin{reminder}{GyA} \end_layout \end_inset @@ -3379,7 +3379,7 @@ Dado un espacio topológico \end_inset , -\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$ +\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$ \end_inset es un subanillo de @@ -3404,7 +3404,7 @@ Dado un espacio vectorial \end_inset , -\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$ +\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$ \end_inset es un subanillo de @@ -3433,7 +3433,7 @@ Dado un anillo \end_inset , -\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$ +\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$ \end_inset es un subanillo de @@ -3893,7 +3893,7 @@ ideal de a \begin_inset Formula \[ -(S)\coloneqq\bigcap\{I\trianglelefteq A:S\subseteq I\}=\{a_{1}s_{1}+\dots+a_{n}s_{n}\}_{n\in\mathbb{N},a\in A^{n},s\in S^{n}}, +(S)\coloneqq\bigcap\{I\trianglelefteq A\mid S\subseteq I\}=\{a_{1}s_{1}+\dots+a_{n}s_{n}\}_{n\in\mathbb{N},a\in A^{n},s\in S^{n}}, \] \end_inset @@ -3912,7 +3912,7 @@ conjunto generador . En efecto, -\begin_inset Formula $\bigcap\{I\trianglelefteq A:S\subseteq I\}$ +\begin_inset Formula $\bigcap\{I\trianglelefteq A\mid S\subseteq I\}$ \end_inset es un ideal de @@ -5609,7 +5609,7 @@ Dado un homomorfismo de anillos , la extensión es una biyección \begin_inset Formula \[ -\{I\trianglelefteq A:\ker f\subseteq I\}\to\{J\trianglelefteq\text{Im}f\}, +\{I\trianglelefteq A\mid\ker f\subseteq I\}\to\{J\trianglelefteq\text{Im}f\}, \] \end_inset @@ -5715,7 +5715,7 @@ Si es la proyección canónica, \begin_inset Formula \[ -\rho:\{J\trianglelefteq A:I\subseteq J\}\to\{K\trianglelefteq A/I\} +\rho:\{J\trianglelefteq A\mid I\subseteq J\}\to\{K\trianglelefteq A/I\} \] \end_inset @@ -5821,7 +5821,7 @@ Hay tantos ideales de \end_inset y -\begin_inset Formula $\{I\trianglelefteq\mathbb{Z}:(n)\subseteq I\}$ +\begin_inset Formula $\{I\trianglelefteq\mathbb{Z}\mid(n)\subseteq I\}$ \end_inset , pero @@ -6810,11 +6810,11 @@ espectro maximal \end_inset , la biyección -\begin_inset Formula $\{J\in{\cal L}(A):I\subseteq J\}\to{\cal L}(A/I)$ +\begin_inset Formula $\{J\in{\cal L}(A)\mid I\subseteq J\}\to{\cal L}(A/I)$ \end_inset del teorema de la correspondencia se restringe a una biyección -\begin_inset Formula $\{J\in\text{MaxSpec}(A):I\subseteq J\}\to\text{MaxSpec}(A/I)$ +\begin_inset Formula $\{J\in\text{MaxSpec}(A)\mid I\subseteq J\}\to\text{MaxSpec}(A/I)$ \end_inset . @@ -6911,7 +6911,7 @@ Si Demostración: \series default Sea -\begin_inset Formula $\Omega\coloneqq\{J\triangleleft A:I\subseteq J\}$ +\begin_inset Formula $\Omega\coloneqq\{J\triangleleft A\mid I\subseteq J\}$ \end_inset , @@ -7037,7 +7037,7 @@ radical de Jacobson \end_inset a -\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)=\{a\in A:1+(a)\subseteq A^{*}\}$ +\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)=\{a\in A\mid1+(a)\subseteq A^{*}\}$ \end_inset . @@ -7543,11 +7543,11 @@ espectro primo \end_inset , la biyección -\begin_inset Formula $\{J\in{\cal L}(A):I\subseteq J\}\to{\cal L}(A/I)$ +\begin_inset Formula $\{J\in{\cal L}(A)\mid I\subseteq J\}\to{\cal L}(A/I)$ \end_inset se restringe a una biyección -\begin_inset Formula $\{J\in\text{Spec}(A):I\subseteq J\}\to\text{Spec}(A/I)$ +\begin_inset Formula $\{J\in\text{Spec}(A)\mid I\subseteq J\}\to\text{Spec}(A/I)$ \end_inset . @@ -7992,7 +7992,7 @@ primo minimal sobre Demostración: \series default Sea -\begin_inset Formula $\Omega\coloneqq\{P\trianglelefteq_{\text{p}}A:I\subseteq P\subseteq Q\}$ +\begin_inset Formula $\Omega\coloneqq\{P\trianglelefteq_{\text{p}}A\mid I\subseteq P\subseteq Q\}$ \end_inset , @@ -8363,7 +8363,7 @@ Lema de Krull: \end_layout \begin_layout Enumerate -\begin_inset Formula ${\cal L}_{I,S}\coloneqq\{J\trianglelefteq A:I\subseteq J,J\cap S=\emptyset\}$ +\begin_inset Formula ${\cal L}_{I,S}\coloneqq\{J\trianglelefteq A\mid I\subseteq J,J\cap S=\emptyset\}$ \end_inset es un conjunto inductivo no vacío. @@ -8490,7 +8490,7 @@ radical a \begin_inset Formula \[ -\sqrt{I}\coloneqq\{x\in A:\exists n\in\mathbb{N}:x^{n}\in I\}=\bigcap\{J\trianglelefteq_{\text{r}}A:I\subseteq J\}=\bigcap\{J\trianglelefteq_{\text{p}}A:I\subseteq J\}, +\sqrt{I}\coloneqq\{x\in A\mid\exists n\in\mathbb{N}\mid x^{n}\in I\}=\bigcap\{J\trianglelefteq_{\text{r}}A\mid I\subseteq J\}=\bigcap\{J\trianglelefteq_{\text{p}}A\mid I\subseteq J\}, \] \end_inset @@ -8785,7 +8785,7 @@ euclídea \end_layout \begin_layout Enumerate -\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ +\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ \end_inset . @@ -9338,11 +9338,11 @@ polinomios constantes \end_inset , -\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$ +\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$ \end_inset e -\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$ +\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$ \end_inset son ideales de @@ -9366,7 +9366,7 @@ grado \end_inset a -\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$ +\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ \end_inset , @@ -9916,7 +9916,7 @@ Para \end_inset , existe -\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$ +\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid(X-a)^{k}\mid f\}$ \end_inset . @@ -10448,7 +10448,7 @@ Definimos \end_inset , -\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$ +\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ \end_inset , y para @@ -771,7 +771,7 @@ Para \end_inset , los -\begin_inset Formula $I_{n}\coloneqq\{a:\forall k>n,a_{k}=0\}$ +\begin_inset Formula $I_{n}\coloneqq\{a\mid \forall k>n,a_{k}=0\}$ \end_inset cumplen @@ -779,7 +779,7 @@ Para \end_inset y los -\begin_inset Formula $J_{n}\coloneqq\{a:\forall k<n,a_{k}=0\}$ +\begin_inset Formula $J_{n}\coloneqq\{a\mid \forall k<n,a_{k}=0\}$ \end_inset cumplen @@ -1333,7 +1333,7 @@ Dados \end_inset , llamamos -\begin_inset Formula $(I:S)=\{a\in A:aS\subseteq I\}$ +\begin_inset Formula $(I:S)=\{a\in A\mid aS\subseteq I\}$ \end_inset . @@ -1491,7 +1491,7 @@ anulador \end_inset a -\begin_inset Formula $\text{ann}_{A}(X)\coloneqq(0:X)=\{a\in A:aX=0\}$ +\begin_inset Formula $\text{ann}_{A}(X)\coloneqq(0:X)=\{a\in A\mid aX=0\}$ \end_inset , y entonces @@ -1719,7 +1719,7 @@ Claramente \end_layout \begin_layout Standard -\begin_inset Formula $(P:(a))=\{c\in A:c(a)=(ca)\subseteq P\}=\{c\in A:ac\in P\}$ +\begin_inset Formula $(P:(a))=\{c\in A\mid c(a)=(ca)\subseteq P\}=\{c\in A\mid ac\in P\}$ \end_inset , y entonces @@ -2218,7 +2218,7 @@ dimensión de Krull es \begin_inset Formula \[ -\dim A\coloneqq\text{Kdim}A\coloneqq\sup\{n\in\mathbb{N}:\exists P_{0},\dots,P_{n}\trianglelefteq_{\text{p}}A:P_{0}\subsetneq\dots\subsetneq P_{n}\}\in\mathbb{N}\cup\{\infty\}, +\dim A\coloneqq\text{Kdim}A\coloneqq\sup\{n\in\mathbb{N}\mid \exists P_{0},\dots,P_{n}\trianglelefteq_{\text{p}}A:P_{0}\subsetneq\dots\subsetneq P_{n}\}\in\mathbb{N}\cup\{\infty\}, \] \end_inset @@ -2443,7 +2443,7 @@ Dado . Si no lo fuera, -\begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A:KI\neq0\}\neq\emptyset$ +\begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A\mid KI\neq0\}\neq\emptyset$ \end_inset , pues @@ -304,7 +304,7 @@ anulador \end_inset a -\begin_inset Formula $\text{ann}_{M}(X)\coloneqq\{m\in M:Xm=0\}\leq_{A}M$ +\begin_inset Formula $\text{ann}_{M}(X)\coloneqq\{m\in M\mid Xm=0\}\leq_{A}M$ \end_inset . @@ -339,7 +339,7 @@ externa ) \begin_inset Formula \[ -\bigoplus_{i\in I}M_{i}\coloneqq\left\{ x\in\prod_{i\in I}M_{i}:\{i\in I:x_{i}\neq0\}\text{ finito}\right\} . +\bigoplus_{i\in I}M_{i}\coloneqq\left\{ x\in\prod_{i\in I}M_{i}\;\middle|\;\{i\in I\mid x_{i}\neq0\}\text{ finito}\right\} . \] \end_inset @@ -645,7 +645,7 @@ Si \end_inset , -\begin_inset Formula $\{f\in A[X]:\text{gr}f\leq n\}$ +\begin_inset Formula $\{f\in A[X]\mid\text{gr}f\leq n\}$ \end_inset es un submódulo de @@ -1296,7 +1296,7 @@ Si \end_inset , -\begin_inset Formula $_{A/I}\text{Mod}\equiv\{M\in_{A}\text{Mod}:IM=0\}$ +\begin_inset Formula $_{A/I}\text{Mod}\equiv\{M\in_{A}\text{Mod}\mid IM=0\}$ \end_inset por la biyección diff --git a/aec/n.pdf b/aec/n.pdf Binary files differdeleted file mode 100755 index d5293be..0000000 --- a/aec/n.pdf +++ /dev/null diff --git a/aed1/graph.eps b/aed1/graph.eps Binary files differnew file mode 100644 index 0000000..79fafd8 --- /dev/null +++ b/aed1/graph.eps diff --git a/aed1/n2.lyx b/aed1/n2.lyx index 26201e5..22a657a 100644 --- a/aed1/n2.lyx +++ b/aed1/n2.lyx @@ -303,7 +303,7 @@ Diccionario[ (k,v,d)\overset{k\notin\text{Dom}(d)}{\mapsto}D\cup\{(k,v)\} & (k,d)\overset{k\in\text{Dom}(d)}{\mapsto}d(k)\\ \mathsf{}\\ \mathsf{Suprime}:T_{k}\times D\rightarrow D & \mathsf{Vacío}:\rightarrow D\\ -(k,d)\mapsto\{(a,b)\in d:a\neq k\} & \mapsto\emptyset +(k,d)\mapsto\{(a,b)\in d\mid a\neq k\} & \mapsto\emptyset \end{array} \] @@ -373,7 +373,7 @@ Abierta cubetas \series default , que contienen los elementos -\begin_inset Formula $\{e\in c:h(e)=k\}$ +\begin_inset Formula $\{e\in c\mid h(e)=k\}$ \end_inset , siendo diff --git a/aed1/n4.lyx b/aed1/n4.lyx index db68fda..3e1e0aa 100644 --- a/aed1/n4.lyx +++ b/aed1/n4.lyx @@ -107,7 +107,7 @@ nodos aristas \series default -\begin_inset Formula $E\subseteq\{(a,b)\in V\times V:a\neq b\}$ +\begin_inset Formula $E\subseteq\{(a,b)\in V\times V\mid a\neq b\}$ \end_inset , mientras que uno @@ -123,7 +123,7 @@ no dirigido \end_inset y -\begin_inset Formula $E\subseteq\{x\in{\cal P}(V):|x|=2\}$ +\begin_inset Formula $E\subseteq\{x\in{\cal P}(V)\mid |x|=2\}$ \end_inset . @@ -136,7 +136,7 @@ bucles \end_inset para que el grafo sea dirigido o que -\begin_inset Formula $E\subseteq\{x\in{\cal P}(V):|x|\in\{1,2\}\}$ +\begin_inset Formula $E\subseteq\{x\in{\cal P}(V)\mid |x|\in\{1,2\}\}$ \end_inset para que sea no dirigido. @@ -374,7 +374,7 @@ grado \end_inset es el número de arcos adyacentes a él ( -\begin_inset Formula $|\{X\in E:v\in X\}|$ +\begin_inset Formula $|\{X\in E\mid v\in X\}|$ \end_inset ), mientras que en uno dirigido @@ -390,7 +390,7 @@ grado de entrada \end_inset como -\begin_inset Formula $|\{(a,b)\in A:b=v\}|$ +\begin_inset Formula $|\{(a,b)\in A\mid b=v\}|$ \end_inset y el @@ -398,7 +398,7 @@ grado de entrada grado de salida \series default como -\begin_inset Formula $|\{(a,b)\in A:a=v\}|$ +\begin_inset Formula $|\{(a,b)\in A\mid a=v\}|$ \end_inset . @@ -419,7 +419,7 @@ Operaciones elementales: ((V,E),v)\mapsto(V\cup\{v\},E) & ((V,E),(a,b))\overset{a,b\in V}{\mapsto}(V,E\cup\{e\})\\ \\ \mathsf{EliminarNodo}:G\times{\cal U}\rightarrow G & \mathsf{EliminarArista}:G\times({\cal U}\times{\cal U})\rightarrow G\\ -((V,E),v)\mapsto(V\backslash\{e\},\{(a,b)\in E:a,b\neq v\}) & ((V,E),e)\mapsto(V,E\backslash\{e\})\\ +((V,E),v)\mapsto(V\backslash\{e\},\{(a,b)\in E\mid a,b\neq v\}) & ((V,E),e)\mapsto(V,E\backslash\{e\})\\ \\ \mathsf{ConsultarArista}:G\times({\cal U}\times{\cal U})\rightarrow B\\ ((V,E),(a,b))\mapsto(a,b)\in A @@ -456,8 +456,9 @@ status open \begin_layout Plain Layout \align center -\begin_inset Graphics - filename graph.svg +\begin_inset External + template VectorGraphics + filename graph.eps scale 60 \end_inset @@ -508,7 +509,7 @@ En un ordenador podemos representar un grafo finito \end_inset o -\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma:E\rightarrow X)$ +\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma\mid E\rightarrow X)$ \end_inset mediante: @@ -594,12 +595,12 @@ Listas de adyacencia (representados como listas enlazadas en una lista contigua) de los que -\begin_inset Formula $C_{i}=\{j:(i,j)\in E\}$ +\begin_inset Formula $C_{i}=\{j\mid(i,j)\in E\}$ \end_inset . Si el grafo es etiquetado, -\begin_inset Formula $C_{i}=\{(j,\sigma(i,j)):(i,j)\in E\}$ +\begin_inset Formula $C_{i}=\{(j,\sigma(i,j))\mid(i,j)\in E\}$ \end_inset . @@ -617,7 +618,7 @@ Listas de adyacencia \begin_layout Standard En adelante, salvo que se indique lo contrario, suponemos un grafo -\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma:E\rightarrow X)$ +\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma\mid E\rightarrow X)$ \end_inset , y que las variables en pseudocódigo se inicializan con su valor por defecto. @@ -2586,7 +2587,7 @@ grafo reducido \end_inset y -\begin_inset Formula $E_{R}:=\{(A,B)\in V_{R}:\exists a\in A,b\in B:(a,b)\in E\}$ +\begin_inset Formula $E_{R}:=\{(A,B)\in V_{R}\mid \exists a\in A,b\in B:(a,b)\in E\}$ \end_inset . diff --git a/aed2/n.pdf b/aed2/n.pdf Binary files differdeleted file mode 100644 index a7d382d..0000000 --- a/aed2/n.pdf +++ /dev/null @@ -258,7 +258,7 @@ espacio normado \end_inset , y llamamos -\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X:\Vert x\Vert\leq1\}$ +\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X\mid \Vert x\Vert\leq1\}$ \end_inset y conjunto de @@ -266,7 +266,7 @@ espacio normado vectores unitarios \series default a -\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X:\Vert x\Vert=1\}$ +\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X\mid \Vert x\Vert=1\}$ \end_inset . @@ -2655,7 +2655,7 @@ topología cociente \end_inset a -\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$ +\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$ \end_inset , donde @@ -3615,7 +3615,7 @@ Por isomorfismo podemos suponer que el dominio es \end_inset , -\begin_inset Formula $\sup_{x\in S_{\ell_{n}^{1}}}\Vert T(x)\Vert=\sup_{\{x\in\mathbb{K}^{n}:\sum_{i}x_{i}=1\}}\left\Vert \sum_{i}x_{i}a_{i}\right\Vert =\sup_{i=1}^{n}a_{i}<\infty$ +\begin_inset Formula $\sup_{x\in S_{\ell_{n}^{1}}}\Vert T(x)\Vert=\sup_{\{x\in\mathbb{K}^{n}\mid \sum_{i}x_{i}=1\}}\left\Vert \sum_{i}x_{i}a_{i}\right\Vert =\sup_{i=1}^{n}a_{i}<\infty$ \end_inset . diff --git a/algl/n1.lyx b/algl/n1.lyx index 47d85c9..da5b457 100644 --- a/algl/n1.lyx +++ b/algl/n1.lyx @@ -242,7 +242,7 @@ unidad: Inverso para el producto: \series default -\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a'':a\cdot a''=1$ +\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a''\mid a\cdot a''=1$ \end_inset ; @@ -1062,7 +1062,7 @@ Si \end_inset , el conjunto -\begin_inset Formula $\mathcal{F}(\mathcal{S},K)=\{f:\mathcal{S}\rightarrow K\}$ +\begin_inset Formula $\mathcal{F}(\mathcal{S},K)=\{f\mid \mathcal{S}\rightarrow K\}$ \end_inset , formado por todas las aplicaciones de @@ -1087,7 +1087,7 @@ Si -espacio vectorial. Con estas mismas operaciones, el conjunto -\begin_inset Formula $\mathcal{C}([a,b],\mathbb{R})=\{f:[a,b]\rightarrow\mathbb{R}|f\text{ continua}\}$ +\begin_inset Formula $\mathcal{C}([a,b],\mathbb{R})=\{f\mid [a,b]\rightarrow\mathbb{R}|f\text{ continua}\}$ \end_inset es un @@ -1320,7 +1320,7 @@ Los subconjuntos . También lo es -\begin_inset Formula $U_{a,b}=\{f\in\mathcal{C}([a,b],\mathbb{R}):f(a)=f(b)\}$ +\begin_inset Formula $U_{a,b}=\{f\in\mathcal{C}([a,b],\mathbb{R})\mid f(a)=f(b)\}$ \end_inset respecto de @@ -1738,7 +1738,7 @@ base canónica \end_inset y 0 en el resto, entonces -\begin_inset Formula $\{A_{ij}:1\leq i\leq m,1\leq j\leq n\}$ +\begin_inset Formula $\{A_{ij}\mid 1\leq i\leq m,1\leq j\leq n\}$ \end_inset es base de diff --git a/algl/n4.lyx b/algl/n4.lyx index cf26416..a0f5c5f 100644 --- a/algl/n4.lyx +++ b/algl/n4.lyx @@ -1095,7 +1095,7 @@ Llamamos filas o columnas: \begin_inset Formula \[ -\chi_{r}=\{(i_{1},\dots,i_{r}):1\leq i_{1}<\dots<i_{r}\leq n\} +\chi_{r}=\{(i_{1},\dots,i_{r})\mid 1\leq i_{1}<\dots<i_{r}\leq n\} \] \end_inset diff --git a/algl/n5.lyx b/algl/n5.lyx index bb844d5..963ebd6 100644 --- a/algl/n5.lyx +++ b/algl/n5.lyx @@ -526,7 +526,7 @@ Los vectores propios de . Así, -\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$ +\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$ \end_inset es el @@ -1519,7 +1519,7 @@ Queremos ver que . Si -\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V:v\bot E_{k-1}\}$ +\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V\mid v\bot E_{k-1}\}$ \end_inset , basta ver que para todo subespacio @@ -1860,7 +1860,7 @@ Sea \begin_deeper \begin_layout Standard -\begin_inset Formula $\sup\{\Vert Ax\Vert:\Vert x\Vert=1\}=\sup\{\sum_{k}|Ax|_{k}:\sum_{k}|x_{k}|=1\}=\sup\{\sum_{k,i}|a_{ki}||x_{i}|:\sum_{i}|x_{i}|=1\}$ +\begin_inset Formula $\sup\{\Vert Ax\Vert\mid\Vert x\Vert=1\}=\sup\{\sum_{k}|Ax|_{k}\mid\sum_{k}|x_{k}|=1\}=\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}$ \end_inset . @@ -1889,7 +1889,7 @@ Sea \end_inset luego -\begin_inset Formula $\sup\{\sum_{k,i}|a_{ki}||x_{i}|:\sum_{i}|x_{i}|=1\}=\max_{i}\sum_{k}|a_{ki}|$ +\begin_inset Formula $\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}=\max_{i}\sum_{k}|a_{ki}|$ \end_inset . @@ -1922,10 +1922,14 @@ luego \begin_deeper \begin_layout Standard -\begin_inset Formula $\Vert A\Vert_{2}^{2}=\sup\left\{ \frac{\Vert Ax\Vert_{2}^{2}}{\Vert x\Vert_{2}^{2}}:\Vert x\Vert_{2}=1\right\} =\sup\left\{ \frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\frac{\langle A^{*}Ax,x\rangle}{\langle x,x\rangle}=R_{A^{*}A}(x):\Vert x\Vert_{2}=1\right\} $ +\begin_inset Formula +\[ +\Vert A\Vert_{2}^{2}=\sup\left\{ \frac{\Vert Ax\Vert_{2}^{2}}{\Vert x\Vert_{2}^{2}}\;\middle|\;\Vert x\Vert_{2}=1\right\} =\sup\left\{ \frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\frac{\langle A^{*}Ax,x\rangle}{\langle x,x\rangle}=R_{A^{*}A}(x)\;\middle|\;\Vert x\Vert_{2}=1\right\} , +\] + \end_inset -, pero si + pero si \begin_inset Formula $\lambda_{1},\dots,\lambda_{m}\geq0$ \end_inset @@ -1938,7 +1942,7 @@ luego \end_inset son los subespacios propios asociados, -\begin_inset Formula $\rho(A^{*}A)=\max\{\lambda_{1},\dots,\lambda_{m}\}=\max_{k=1}^{m}\max\{R_{A^{*}A}(v):v\in E_{k}\setminus\{0\}\}=\max\{R_{A^{*}A}(v):v\neq0\}$ +\begin_inset Formula $\rho(A^{*}A)=\max\{\lambda_{1},\dots,\lambda_{m}\}=\max_{k=1}^{m}\max\{R_{A^{*}A}(v)\mid v\in E_{k}\setminus\{0\}\}=\max\{R_{A^{*}A}(v)\mid v\neq0\}$ \end_inset , y como @@ -1950,7 +1954,7 @@ R_{A^{*}A}(v)=\frac{\langle Av,v\rangle}{\langle v,v\rangle}=\left\langle A\frac \end_inset queda -\begin_inset Formula $\rho(A^{*}A)=\max\{R_{A^{*}A}(v):v\neq0\}=\max\{R_{A^{*}A}(v):\Vert v\Vert_{2}=1\}=\Vert A\Vert_{2}^{2}$ +\begin_inset Formula $\rho(A^{*}A)=\max\{R_{A^{*}A}(v)\mid v\neq0\}=\max\{R_{A^{*}A}(v)\mid\Vert v\Vert_{2}=1\}=\Vert A\Vert_{2}^{2}$ \end_inset . @@ -1968,8 +1972,8 @@ queda \begin_layout Standard \begin_inset Formula \begin{align*} -\Vert A\Vert_{\infty} & =\sup\{\Vert Ax\Vert_{\infty}:\Vert x\Vert_{\infty}=1\}=\sup\{\max_{k}|Ax|_{k}:\max_{k}|x_{k}|=1\}=\\ - & =\sup\left\{ \max_{k}\left|\sum_{i}a_{ki}x_{i}\right|:\max_{i}|x_{i}|=1\right\} =\max_{k}\sup\left\{ \left|\sum_{i}a_{ki}x_{i}\right|:\max_{i}|x_{i}|=1\right\} . +\Vert A\Vert_{\infty} & =\sup\{\Vert Ax\Vert_{\infty}\mid\Vert x\Vert_{\infty}=1\}=\sup\{\max_{k}|Ax|_{k}\mid\max_{k}|x_{k}|=1\}=\\ + & =\sup\left\{ \max_{k}\left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} =\max_{k}\sup\left\{ \left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} . \end{align*} \end_inset @@ -1995,7 +1999,7 @@ queda \end_inset , con lo que -\begin_inset Formula $\sup\{|\sum_{i}a_{ki}x_{i}|:\max_{i}|x_{i}|=1\}=\left|\sum_{i}|a_{ki}|\right|=\sum_{i}|a_{ki}|$ +\begin_inset Formula $\sup\{|\sum_{i}a_{ki}x_{i}|\mid\max_{i}|x_{i}|=1\}=\left|\sum_{i}|a_{ki}|\right|=\sum_{i}|a_{ki}|$ \end_inset , luego @@ -2211,7 +2215,7 @@ La diagonal no cambia, la matriz sigue siendo triangular superior y, para \end_deeper \begin_layout Standard De aquí que -\begin_inset Formula $\rho(A)=\inf\{\Vert A\Vert:\Vert\cdot\Vert\text{ es una norma matricial en }{\cal M}_{n}(\mathbb{K})\}$ +\begin_inset Formula $\rho(A)=\inf\{\Vert A\Vert\mid\Vert\cdot\Vert\text{ es una norma matricial en }{\cal M}_{n}(\mathbb{K})\}$ \end_inset . @@ -2722,7 +2722,7 @@ Si Demostración: \series default Sea -\begin_inset Formula $K:=\{g\in G:\Vert f-g\Vert\leq\Vert f\Vert\}$ +\begin_inset Formula $K:=\{g\in G\mid \Vert f-g\Vert\leq\Vert f\Vert\}$ \end_inset , @@ -907,7 +907,7 @@ Demostración: . En dimensión finita, -\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}:\Vert v\Vert_{A}=1\}$ +\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid \Vert v\Vert_{A}=1\}$ \end_inset . @@ -1769,7 +1769,7 @@ A \emph default es vector, devuelve una matriz diagonal con elementos del vector en la diagonal -\begin_inset Formula $\{(i,j):i+k=j\}$ +\begin_inset Formula $\{(i,j)\mid i+k=j\}$ \end_inset , y de lo contrario devuelve un vector con los elementos de dicha diagonal @@ -1722,7 +1722,7 @@ nodos hiperarcos \series default -\begin_inset Formula $H\subseteq\{(A,B)\in{\cal P}(V)\times{\cal P}(V):A,B\neq\emptyset\}$ +\begin_inset Formula $H\subseteq\{(A,B)\in{\cal P}(V)\times{\cal P}(V)\mid A,B\neq\emptyset\}$ \end_inset . diff --git a/ar/n.pdf b/ar/n.pdf Binary files differdeleted file mode 100755 index ea5d2a3..0000000 --- a/ar/n.pdf +++ /dev/null @@ -234,12 +234,16 @@ Claves Ajenas \family sans (lista numerada de +\lang english + \begin_inset Quotes cld \end_inset ( \emph on -atributo +a +\lang spanish +tributo \emph default , ...) Referencia_a \emph on @@ -249,7 +253,9 @@ NOMBRE_TABLA \emph on atributo_clave \emph default -, ...) +, ... +\lang english +) \begin_inset Quotes crd \end_inset @@ -269,18 +275,23 @@ Derivado \family sans (lista numerada de +\lang english + \begin_inset Quotes cld \end_inset \emph on -atributo +a +\lang spanish +tributo \emph default = \emph on -fórmula +fórmul \emph default - +\lang english +a \begin_inset Quotes crd \end_inset @@ -4639,7 +4639,7 @@ condición \end_inset es una condición, -\begin_inset Formula $\sigma_{C}(R):=(\{r\in R:C(r)\},T,N)$ +\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$ \end_inset , donde @@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa Reunión natural \series default : Sea -\begin_inset Formula $\{j_{1},\dots,j_{p}\}:=\{j:M_{j}\notin\{N_{i}\}\}$ +\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$ \end_inset , si para @@ -4805,7 +4805,7 @@ Reunión natural , entonces \begin_inset Formula \[ -R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}}):r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M). +R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M). \] \end_inset @@ -4836,7 +4836,7 @@ reunión externa izquierda \end_inset como -\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R:\nexists s\in S:C(r,s)\}\times N_{m})$ +\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$ \end_inset , la @@ -4844,7 +4844,7 @@ reunión externa izquierda reunión externa derecha \series default como -\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S:\nexists r\in R:C(r,s)\})$ +\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$ \end_inset y la @@ -4870,7 +4870,7 @@ División , entonces \begin_inset Formula \[ -R\div S:=(\{r:\forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})). +R\div S:=(\{r\mid \forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})). \] \end_inset @@ -5220,7 +5220,7 @@ segura \end_inset se refiere al conjunto -\begin_inset Formula $\{T:t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$ +\begin_inset Formula $\{T\mid t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$ \end_inset . @@ -917,6 +917,8 @@ sideways false status open \begin_layout Plain Layout + +\lang english \begin_inset ERT status open @@ -1092,6 +1094,8 @@ in C$}{rehacer $e$} \end_inset +\lang spanish + \begin_inset Caption Standard \begin_layout Plain Layout @@ -901,7 +901,7 @@ Una forma sentencial \series default es un elemento de -\begin_inset Formula $D(G):=\{\alpha\in(V_{N}\cup V_{T})^{*}:S\Rightarrow^{*}\alpha\}$ +\begin_inset Formula $D(G):=\{\alpha\in(V_{N}\cup V_{T})^{*}\mid S\Rightarrow^{*}\alpha\}$ \end_inset , y una @@ -742,7 +742,7 @@ Dada una GLC como \begin_inset Formula \[ -\mathsf{PRIMERO}(\alpha):=\{a\in V_{T}:\exists\beta:\alpha\Rightarrow^{*}a\beta\}\cup\{\lambda:\alpha\Rightarrow^{*}\lambda\}. +\mathsf{PRIMERO}(\alpha):=\{a\in V_{T}\mid \exists\beta:\alpha\Rightarrow^{*}a\beta\}\cup\{\lambda\mid \alpha\Rightarrow^{*}\lambda\}. \] \end_inset @@ -986,7 +986,7 @@ noprefix "false" \begin_inset Formula \begin{multline*} \mathsf{PRIMERO}(X_{1}\cdots X_{n})=\\ -=\bigcup_{i=1}^{\min(\{i:X_{1}\cdots X_{i}\nRightarrow^{*}\lambda\}\cup\{n\})}(\sigma(X_{i})\setminus\{\lambda\})\cup\{\lambda:X_{1}\cdots X_{n}\Rightarrow^{*}\lambda\}. +=\bigcup_{i=1}^{\min(\{i\mid X_{1}\cdots X_{i}\nRightarrow^{*}\lambda\}\cup\{n\})}(\sigma(X_{i})\setminus\{\lambda\})\cup\{\lambda\mid X_{1}\cdots X_{n}\Rightarrow^{*}\lambda\}. \end{multline*} \end_inset @@ -1250,7 +1250,7 @@ Definimos como \begin_inset Formula \[ -\mathsf{SIGUIENTE}(A):=\{a\in V_{T}:\exists\alpha,\beta:S\Rightarrow^{+}\alpha Aa\beta\}\cup\{\$:\exists\alpha:S\Rightarrow^{*}\alpha A\}, +\mathsf{SIGUIENTE}(A):=\{a\in V_{T}\mid \exists\alpha,\beta:S\Rightarrow^{+}\alpha Aa\beta\}\cup\{\$\mid \exists\alpha\mid S\Rightarrow^{*}\alpha A\}, \] \end_inset @@ -3251,7 +3251,7 @@ Si, para \end_inset , -\begin_inset Formula $\rho(I):=\{R:\exists a\in V_{T}:[R,a]\in I\}$ +\begin_inset Formula $\rho(I):=\{R\mid \exists a\in V_{T}\mid [R,a]\in I\}$ \end_inset , para @@ -5179,7 +5179,7 @@ tabla de análisis \end_inset dada por -\begin_inset Formula $M(A,a):=\{A\to\alpha\in P:a\in\mathsf{Predict}(A\to\alpha)\}$ +\begin_inset Formula $M(A,a):=\{A\to\alpha\in P\mid a\in\mathsf{Predict}(A\to\alpha)\}$ \end_inset , que a cada no terminal a derivar y terminal siguiente en la entrada le diff --git a/cn/n.pdf b/cn/n.pdf Binary files differdeleted file mode 100755 index 6264062..0000000 --- a/cn/n.pdf +++ /dev/null @@ -608,11 +608,11 @@ Una familia de conjuntos es una colección Unión arbitraria: \series default -\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}:x\in A\}$ +\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}\mid x\in A\}$ \end_inset ; -\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I:x\in A_{i}\}$ +\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I\mid x\in A_{i}\}$ \end_inset @@ -624,11 +624,11 @@ Unión arbitraria: Intersección arbitraria: \series default -\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}:x\in A\}$ +\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}\mid x\in A\}$ \end_inset ; -\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I:x\in A_{i}\}$ +\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I\mid x\in A_{i}\}$ \end_inset @@ -888,7 +888,7 @@ Conjunto final: Dominio: \series default -\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B:(a,b)\in R\}$ +\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B\mid (a,b)\in R\}$ \end_inset . @@ -900,7 +900,7 @@ Dominio: Imagen: \series default -\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A:(a,b)\in R\}$ +\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A\mid (a,b)\in R\}$ \end_inset . @@ -121,7 +121,7 @@ aplicación \end_inset , de modo que -\begin_inset Formula $f=\{(n,n^{2}):n\in\mathbb{N}\}$ +\begin_inset Formula $f=\{(n,n^{2})\mid n\in\mathbb{N}\}$ \end_inset . @@ -221,7 +221,7 @@ imagen directa \end_inset : -\begin_inset Formula $\text{Im}f=f(A)=\{b\in B:\exists a:f(a)=b\}\subseteq B$ +\begin_inset Formula $\text{Im}f=f(A)=\{b\in B\mid\exists a\mid f(a)=b\}\subseteq B$ \end_inset . @@ -1359,7 +1359,7 @@ producto directo como el conjunto \begin_inset Formula \[ -\prod_{i\in I}A_{i}=\left\{ f:I\rightarrow\cup_{i\in I}:f(i)\in A_{i}\forall i\in I\right\} +\prod_{i\in I}A_{i}=\left\{ f\mid I\rightarrow\bigcup_{i\in I}\;\middle|\;f(i)\in A_{i}\forall i\in I\right\} \] \end_inset @@ -1383,7 +1383,7 @@ Si es finito y se escribe como una lista, podemos escribir el conjunto como -\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n}):x_{i}\in A_{i},i=1,\dots,n\}$ +\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n})\mid x_{i}\in A_{i},i=1,\dots,n\}$ \end_inset . @@ -1420,7 +1420,7 @@ Sean \end_inset y un conjunto de biyecciones -\begin_inset Formula $\{f_{i}:A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$ +\begin_inset Formula $\{f_{i}\mid A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$ \end_inset , entonces existe una biyección @@ -125,7 +125,7 @@ Sea \end_inset , su clase de equivalencia es -\begin_inset Formula $[a]=\{b\in A:a\sim b\}$ +\begin_inset Formula $[a]=\{b\in A\mid a\sim b\}$ \end_inset . @@ -2100,7 +2100,7 @@ raíz Así, todo número complejo tiene \begin_inset Formula \[ -\phi(n)=|\{m\in\{1,\dots,n-1\}:\text{mcd}(m,n)=1\}| +\phi(n)=|\{m\in\{1,\dots,n-1\}\mid \text{mcd}(m,n)=1\}| \] \end_inset @@ -201,7 +201,7 @@ Demostración: \end_inset y -\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}:x=a-bn\}\subseteq\mathbb{N}$ +\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}\mid x=a-bn\}\subseteq\mathbb{N}$ \end_inset . @@ -512,7 +512,7 @@ Dados máximo común divisor \series default es -\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}:d|a\land d|b\}$ +\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}\mid d|a\land d|b\}$ \end_inset (excepción: @@ -792,7 +792,7 @@ El máximo común divisor de \end_inset es -\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}:\forall i,d|a_{i}\}$ +\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}\mid \forall i,d|a_{i}\}$ \end_inset . @@ -1071,7 +1071,7 @@ Dados mínimo común múltiplo \series default es -\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}:a|m\land b|m\}$ +\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}\mid a|m\land b|m\}$ \end_inset . @@ -1215,7 +1215,7 @@ El mínimo común múltiplo de \end_inset es -\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}:\forall i,a_{i}|m\}$ +\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}\mid \forall i,a_{i}|m\}$ \end_inset . @@ -453,7 +453,7 @@ divisor \end_layout \begin_layout Enumerate -\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$ +\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}\mid A=\mu B$ \end_inset . diff --git a/ealg/n1.lyx b/ealg/n1.lyx index 7068e05..a5d022d 100644 --- a/ealg/n1.lyx +++ b/ealg/n1.lyx @@ -223,7 +223,7 @@ grado \end_inset a -\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$ +\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ \end_inset , @@ -831,7 +831,7 @@ euclídea \end_layout \begin_layout Enumerate -\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ +\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ \end_inset . @@ -968,7 +968,7 @@ Para \end_inset , existe -\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$ +\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$ \end_inset . @@ -1875,7 +1875,7 @@ teorema \end_inset ], -\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$ +\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ \end_inset , y [...] si @@ -3967,11 +3967,11 @@ Queremos ver que, para . Con esto, sean -\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}:a_{i}\neq0\}$ +\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}\mid a_{i}\neq0\}$ \end_inset , -\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}:b_{j}\neq0\}$ +\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}\mid b_{j}\neq0\}$ \end_inset , diff --git a/ealg/n2.lyx b/ealg/n2.lyx index a006108..cbcd97d 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -4611,7 +4611,7 @@ clausura algebraica es \begin_inset Formula \[ -\overline{K}_{L}:=\{\alpha\in L:\alpha\text{ es algebraico sobre }K\}. +\overline{K}_{L}:=\{\alpha\in L\mid \alpha\text{ es algebraico sobre }K\}. \] \end_inset diff --git a/ealg/n4.lyx b/ealg/n4.lyx index e9f8c50..4a46a08 100644 --- a/ealg/n4.lyx +++ b/ealg/n4.lyx @@ -1089,7 +1089,7 @@ grupo de Galois \end_inset lleva raíces a raíces y por tanto -\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}:\{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$ +\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}\mid \{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$ \end_inset es inyectiva por serlo @@ -1491,7 +1491,7 @@ teorema \end_inset , -\begin_inset Formula $K(\{\alpha\in\overline{K}:\exists f\in{\cal P}:f(\alpha)=0\})$ +\begin_inset Formula $K(\{\alpha\in\overline{K}\mid \exists f\in{\cal P}:f(\alpha)=0\})$ \end_inset , por lo que existe un cuerpo de descomposición de @@ -2010,7 +2010,7 @@ Para cada \end_inset elementos y viene dado por -\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$ +\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$ \end_inset . @@ -2019,7 +2019,7 @@ Para cada \begin_deeper \begin_layout Standard Sea -\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$ +\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$ \end_inset el conjunto de raíces de diff --git a/ealg/n5.lyx b/ealg/n5.lyx index a3eaed8..18c97fd 100644 --- a/ealg/n5.lyx +++ b/ealg/n5.lyx @@ -112,7 +112,7 @@ de uno , y llamamos \begin_inset Formula \[ -{\cal U}_{n}(K):=\{\xi\in K:\xi^{n}=1\}=\{\xi\in K:o_{K^{*}}(\xi)\mid n\}. +{\cal U}_{n}(K):=\{\xi\in K\mid \xi^{n}=1\}=\{\xi\in K\mid o_{K^{*}}(\xi)\mid n\}. \] \end_inset diff --git a/ealg/n6.lyx b/ealg/n6.lyx index 343a1ac..fd441a7 100644 --- a/ealg/n6.lyx +++ b/ealg/n6.lyx @@ -243,7 +243,7 @@ Demostración: \end_inset y -\begin_inset Formula $R:=\{\alpha_{1}:=\alpha,\dots,\alpha_{m}\}$ +\begin_inset Formula $R:=\{\alpha_{1}\mid =\alpha,\dots,\alpha_{m}\}$ \end_inset el conjunto de las raíces de @@ -354,7 +354,7 @@ teorema \end_inset Sean -\begin_inset Formula ${\cal P}:=\{f_{\alpha}:=\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$ +\begin_inset Formula ${\cal P}:=\{f_{\alpha}\mid =\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$ \end_inset y @@ -1107,7 +1107,7 @@ clausura normal , y viene dada por \begin_inset Formula \[ -N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}:K\subseteq E\text{ normal}\}. +N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}\mid K\subseteq E\text{ normal}\}. \] \end_inset diff --git a/ealg/n7.lyx b/ealg/n7.lyx index 2faa1a1..f5f15b6 100644 --- a/ealg/n7.lyx +++ b/ealg/n7.lyx @@ -83,7 +83,7 @@ \begin_layout Standard \begin_inset Formula \[ -\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K:\bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}. +\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K\mid \bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}. \] \end_inset @@ -139,8 +139,8 @@ conexión de Galois dado por \begin_inset Formula \begin{align*} -f(F):=F' & :=\{\sigma\in G:\forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\ -g(H):=H' & :=\{\alpha\in L:\forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma. +f(F):=F' & :=\{\sigma\in G\mid \forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\ +g(H):=H' & :=\{\alpha\in L\mid \forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma. \end{align*} \end_inset @@ -150,7 +150,7 @@ En particular, para \end_inset , -\begin_inset Formula $K(\beta)'=\{\sigma\in G:\sigma(\beta)=\beta\}$ +\begin_inset Formula $K(\beta)'=\{\sigma\in G\mid \sigma(\beta)=\beta\}$ \end_inset , y para diff --git a/edo/n.pdf b/edo/n.pdf Binary files differdeleted file mode 100644 index 88ff256..0000000 --- a/edo/n.pdf +++ /dev/null diff --git a/epe/n.pdf b/epe/n.pdf Binary files differdeleted file mode 100644 index d992aea..0000000 --- a/epe/n.pdf +++ /dev/null diff --git a/fc/AND_ANSI_Labelled.svg b/fc/AND_ANSI_Labelled.svg Binary files differindex ee294dc..5ee5c9c 100644 --- a/fc/AND_ANSI_Labelled.svg +++ b/fc/AND_ANSI_Labelled.svg diff --git a/fc/NAND_ANSI_Labelled.svg b/fc/NAND_ANSI_Labelled.svg Binary files differindex 7f97027..719786a 100644 --- a/fc/NAND_ANSI_Labelled.svg +++ b/fc/NAND_ANSI_Labelled.svg diff --git a/fc/NOR_ANSI_Labelled.svg b/fc/NOR_ANSI_Labelled.svg Binary files differindex 0fd18f9..01f63e4 100644 --- a/fc/NOR_ANSI_Labelled.svg +++ b/fc/NOR_ANSI_Labelled.svg diff --git a/fc/Not-gate-en.svg b/fc/Not-gate-en.svg Binary files differindex daf957b..523d62d 100644 --- a/fc/Not-gate-en.svg +++ b/fc/Not-gate-en.svg diff --git a/fc/OR_ANSI_Labelled.svg b/fc/OR_ANSI_Labelled.svg Binary files differindex 6275ef9..05b61be 100644 --- a/fc/OR_ANSI_Labelled.svg +++ b/fc/OR_ANSI_Labelled.svg diff --git a/fc/XOR_ANSI.svg b/fc/XOR_ANSI.svg Binary files differindex 6f14e5b..4981dec 100644 --- a/fc/XOR_ANSI.svg +++ b/fc/XOR_ANSI.svg diff --git a/fc/Xnor-gate-en.svg b/fc/Xnor-gate-en.svg Binary files differindex b205563..2a18ed0 100644 --- a/fc/Xnor-gate-en.svg +++ b/fc/Xnor-gate-en.svg @@ -134,9 +134,33 @@ esquema de Von Neumann \end_layout \begin_layout Standard +\begin_inset Float figure +wide false +sideways false +status open + +\begin_layout Plain Layout +\align center \begin_inset Graphics filename buses.png - width 100text% + width 90text% + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Esquema von Neumann en un ordenador moderno. +\end_layout + +\end_inset + + +\end_layout \end_inset @@ -749,10 +773,33 @@ Unified Extensible Firmware Interface \end_layout \begin_layout Standard +\begin_inset Float figure +wide false +sideways false +status open + +\begin_layout Plain Layout \align center \begin_inset Graphics filename image.TZVI9Y.png - width 100text% + width 90text% + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Placa base de un ordenador de escritorio típico. +\end_layout + +\end_inset + + +\end_layout \end_inset @@ -393,8 +393,9 @@ Puertas lógicas \begin_inset Text \begin_layout Plain Layout -\begin_inset Graphics - filename AND_ANSI_Labelled.svg +\begin_inset External + template VectorGraphics + filename AND_ANSI_Labelled.pdf height 14pt \end_inset @@ -541,8 +542,9 @@ AND \begin_inset Text \begin_layout Plain Layout -\begin_inset Graphics - filename OR_ANSI_Labelled.svg +\begin_inset External + template VectorGraphics + filename OR_ANSI_Labelled.pdf height 14pt \end_inset @@ -689,8 +691,9 @@ OR \begin_inset Text \begin_layout Plain Layout -\begin_inset Graphics - filename XOR_ANSI.svg +\begin_inset External + template VectorGraphics + filename XOR_ANSI.pdf height 14pt \end_inset @@ -730,8 +733,9 @@ XOR \begin_inset Text \begin_layout Plain Layout -\begin_inset Graphics - filename NAND_ANSI_Labelled.svg +\begin_inset External + template VectorGraphics + filename NAND_ANSI_Labelled.pdf height 14pt \end_inset @@ -767,8 +771,9 @@ NAND \begin_inset Text \begin_layout Plain Layout -\begin_inset Graphics - filename NOR_ANSI_Labelled.svg +\begin_inset External + template VectorGraphics + filename NOR_ANSI_Labelled.pdf height 14pt \end_inset @@ -804,8 +809,9 @@ NOR \begin_inset Text \begin_layout Plain Layout -\begin_inset Graphics - filename Xnor-gate-en.svg +\begin_inset External + template VectorGraphics + filename Xnor-gate-en.pdf height 14pt \end_inset @@ -909,8 +915,9 @@ XNOR \begin_inset Text \begin_layout Plain Layout -\begin_inset Graphics - filename Not-gate-en.svg +\begin_inset External + template VectorGraphics + filename Not-gate-en.pdf height 14pt \end_inset @@ -1047,6 +1054,12 @@ Circuito con \end_layout \begin_layout Standard +\begin_inset Float figure +wide false +sideways false +status open + +\begin_layout Plain Layout \align center \begin_inset Graphics filename image.RAWR9Y.png @@ -1057,6 +1070,23 @@ Circuito con \end_layout +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Codificador. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + \begin_layout Subsection Decodificador \end_layout @@ -1075,6 +1105,12 @@ Circuito con \end_layout \begin_layout Standard +\begin_inset Float figure +wide false +sideways false +status open + +\begin_layout Plain Layout \align center \begin_inset Graphics filename image.V5MB9Y.png @@ -1085,6 +1121,23 @@ Circuito con \end_layout +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Decodificador. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + \begin_layout Standard Podemos implementar una función con un decodificador conectando las salidas correspondientes a un @@ -1113,9 +1166,33 @@ Circuito con \end_layout \begin_layout Standard +\begin_inset Float figure +wide false +sideways false +status open + +\begin_layout Plain Layout +\align center \begin_inset Graphics filename image.0PXO9Y.png - width 100text% + width 90text% + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Multiplexores. +\end_layout + +\end_inset + + +\end_layout \end_inset @@ -1186,9 +1263,33 @@ anchura \end_layout \begin_layout Standard +\begin_inset Float figure +wide false +sideways false +status open + +\begin_layout Plain Layout +\align center \begin_inset Graphics filename image.Y3EN9Y.png - width 100text% + width 90text% + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Memoria ROM. +\end_layout + +\end_inset + + +\end_layout \end_inset @@ -253,7 +253,7 @@ En relaciones con aridad dominio \series default como -\begin_inset Formula $\text{Dom}(R)=\{(x_{1},\dots,x_{n-1})|\exists x_{n}:(x_{1},\dots,x_{n})\in R\}$ +\begin_inset Formula $\text{Dom}(R)=\{(x_{1},\dots,x_{n-1})|\exists x_{n}\mid (x_{1},\dots,x_{n})\in R\}$ \end_inset (si la aridad es @@ -261,7 +261,7 @@ dominio \end_inset , entonces -\begin_inset Formula $\text{Dom}(R)=\{x|\exists y:xRy\}$ +\begin_inset Formula $\text{Dom}(R)=\{x|\exists y\mid xRy\}$ \end_inset ), y el @@ -269,7 +269,7 @@ dominio rango \series default como -\begin_inset Formula $\text{Ran}(R)=\{x_{n}|\exists(x_{1},\dots,x_{n-1}):(x_{1},\dots,x_{n})\in R\}$ +\begin_inset Formula $\text{Ran}(R)=\{x_{n}|\exists(x_{1},\dots,x_{n-1})\mid (x_{1},\dots,x_{n})\in R\}$ \end_inset (si la aridad es @@ -277,7 +277,7 @@ rango \end_inset , entonces -\begin_inset Formula $\text{Ran}(R)=\{y|\exists x:xRy\}$ +\begin_inset Formula $\text{Ran}(R)=\{y|\exists x\mid xRy\}$ \end_inset . diff --git a/fuvr1/n1.lyx b/fuvr1/n1.lyx index c26556f..fe23ed5 100644 --- a/fuvr1/n1.lyx +++ b/fuvr1/n1.lyx @@ -269,7 +269,7 @@ Pongamos que existe otro Inverso para el producto: \series default -\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a'':a\cdot a''=1$ +\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a''\mid a\cdot a''=1$ \end_inset ; @@ -893,7 +893,7 @@ bicho \end_inset -\begin_inset Formula $\bigcap\{I:I\text{ es un conjunto inductivo de }\mathbb{R}\}$ +\begin_inset Formula $\bigcap\{I\mid I\text{ es un conjunto inductivo de }\mathbb{R}\}$ \end_inset , la intersección de todos los conjuntos inductivos y por tanto el más pequeño @@ -960,7 +960,7 @@ Para . Entonces -\begin_inset Formula $S=\{n\in\mathbb{N}:1<n<2\}\neq\emptyset\land r\in s$ +\begin_inset Formula $S=\{n\in\mathbb{N}\mid 1<n<2\}\neq\emptyset\land r\in s$ \end_inset . @@ -1023,11 +1023,11 @@ Demostrar resto de propiedades cuando las estudiemos, si no como ejercicio. \begin_layout Standard Definimos -\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}:n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$ +\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}\mid n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$ \end_inset y -\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}:m\in\mathbb{Z},n\in\mathbb{N}\}$ +\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}\mid m\in\mathbb{Z},n\in\mathbb{N}\}$ \end_inset . @@ -1098,7 +1098,7 @@ Dado un número natural \end_inset , un conjunto -\begin_inset Formula $S\subseteq\{n\in\mathbb{N}:n\geq N\}\subseteq\mathbb{N}$ +\begin_inset Formula $S\subseteq\{n\in\mathbb{N}\mid n\geq N\}\subseteq\mathbb{N}$ \end_inset nos sirve para realizar demostraciones para los naturales a partir de un @@ -1145,7 +1145,7 @@ Teorema Fundamental de la Aritmética Demostración: \series default Sea -\begin_inset Formula $A=\{2\leq n\in\mathbb{N}:n\text{ cumple el Teorema Fund. de la Aritmética}\}$ +\begin_inset Formula $A=\{2\leq n\in\mathbb{N}\mid n\text{ cumple el Teorema Fund. de la Aritmética}\}$ \end_inset . @@ -1233,7 +1233,7 @@ propiedad arquimediana: Demostración: \series default De no ser así, -\begin_inset Formula $A:=\{ny:n\in\mathbb{N}\}$ +\begin_inset Formula $A:=\{ny\mid n\in\mathbb{N}\}$ \end_inset estaría acotado superiormente por @@ -1405,7 +1405,7 @@ Demostremos que existe. \end_inset , se tiene que el conjunto -\begin_inset Formula $\{n\in\mathbb{N}:n>x\}\neq\emptyset$ +\begin_inset Formula $\{n\in\mathbb{N}\mid n>x\}\neq\emptyset$ \end_inset , por lo que tiene un primer elemento @@ -1542,7 +1542,7 @@ raíz cuadrada Definimos \begin_inset Formula \[ -\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}:r^{2}<x\} +\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}\mid r^{2}<x\} \] \end_inset @@ -1805,7 +1805,7 @@ Ahora veremos que esto también se cumple con si \end_layout \begin_layout Standard -\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}:r^{2}<2\})$ +\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}\mid r^{2}<2\})$ \end_inset . @@ -1821,7 +1821,7 @@ status open Demostración: \series default Sea -\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}:r^{2}<2\}$ +\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}\mid r^{2}<2\}$ \end_inset . @@ -1950,7 +1950,7 @@ Sea . También podemos probar que -\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r:r\in\mathbb{Q},r<x\}$ +\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r\mid r\in\mathbb{Q},r<x\}$ \end_inset , pues si @@ -2235,7 +2235,7 @@ Sea \end_inset ; -\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}:r^{p}<x\}$ +\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}\mid r^{p}<x\}$ \end_inset . @@ -2266,7 +2266,7 @@ raíz Lo escribimos como \begin_inset Formula \[ -x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r:r\in\mathbb{Q},r^{p}<x\} +x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r\mid r\in\mathbb{Q},r^{p}<x\} \] \end_inset diff --git a/fuvr1/n2.lyx b/fuvr1/n2.lyx index bb73cad..6312a4f 100644 --- a/fuvr1/n2.lyx +++ b/fuvr1/n2.lyx @@ -369,7 +369,7 @@ intervalo cerrado \end_inset al conjunto -\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$ +\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}$ \end_inset , @@ -377,7 +377,7 @@ intervalo cerrado intervalo abierto \series default a -\begin_inset Formula $(a,b):=\{x\in\mathbb{R}:a<x<b\}$ +\begin_inset Formula $(a,b):=\{x\in\mathbb{R}\mid a<x<b\}$ \end_inset e @@ -385,11 +385,11 @@ intervalo abierto intervalos semiabiertos \series default por la derecha e izquierda, respectivamente, a -\begin_inset Formula $[a,b):=\{x\in\mathbb{R}:a\leq x<b\}$ +\begin_inset Formula $[a,b):=\{x\in\mathbb{R}\mid a\leq x<b\}$ \end_inset y -\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}:a<x\leq b\}$ +\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}\mid a<x\leq b\}$ \end_inset . @@ -415,7 +415,7 @@ bola cerrada \end_inset al conjunto -\begin_inset Formula $B[x_{0},r]:=\{x\in K:|x-x_{0}|\leq r\}$ +\begin_inset Formula $B[x_{0},r]:=\{x\in K\mid |x-x_{0}|\leq r\}$ \end_inset , y @@ -423,7 +423,7 @@ bola cerrada bola abierta \series default a -\begin_inset Formula $B(x_{0},r):=\{x\in K:|x-x_{0}|<r\}$ +\begin_inset Formula $B(x_{0},r):=\{x\in K\mid |x-x_{0}|<r\}$ \end_inset . @@ -504,7 +504,7 @@ Demostración: \begin_layout Standard Toda sucesión convergente es acotada, es decir -\begin_inset Formula $\{a_{n}:n\in\mathbb{N}\}$ +\begin_inset Formula $\{a_{n}\mid n\in\mathbb{N}\}$ \end_inset es un conjunto acotado. @@ -1567,11 +1567,11 @@ Demostración: . Entonces uno de los conjuntos -\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[c_{0},m_{0}]\}$ +\begin_inset Formula $\{n\in\mathbb{N}\mid a_{n}\in[c_{0},m_{0}]\}$ \end_inset o -\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[m_{0},d_{0}]\}$ +\begin_inset Formula $\{n\in\mathbb{N}\mid a_{n}\in[m_{0},d_{0}]\}$ \end_inset es infinito. @@ -2744,7 +2744,7 @@ Demostración: \end_inset y sea -\begin_inset Formula $A:=\{z\in\mathbb{R}:a^{z}\leq x\}$ +\begin_inset Formula $A:=\{z\in\mathbb{R}\mid a^{z}\leq x\}$ \end_inset , que sabemos acotado superiormente. diff --git a/fuvr1/n3.lyx b/fuvr1/n3.lyx index 95517f3..e8b4534 100644 --- a/fuvr1/n3.lyx +++ b/fuvr1/n3.lyx @@ -1431,7 +1431,7 @@ Existen \end_inset Si -\begin_inset Formula $\alpha:=\sup\{f(x):x\in[a,b]\}$ +\begin_inset Formula $\alpha:=\sup\{f(x)\mid x\in[a,b]\}$ \end_inset , existe diff --git a/fuvr2/n1.lyx b/fuvr2/n1.lyx index a8766da..b840f8f 100644 --- a/fuvr2/n1.lyx +++ b/fuvr2/n1.lyx @@ -1141,7 +1141,7 @@ Sea . Sea -\begin_inset Formula $A:=\{z\in(x,y]:f(x)\leq f(z)\}$ +\begin_inset Formula $A:=\{z\in(x,y]\mid f(x)\leq f(z)\}$ \end_inset , como diff --git a/fuvr2/n2.lyx b/fuvr2/n2.lyx index 9d5d103..b0dcf59 100644 --- a/fuvr2/n2.lyx +++ b/fuvr2/n2.lyx @@ -263,7 +263,7 @@ de Darboux ), respectivamente, a \begin_inset Formula \begin{eqnarray*} -\underline{\int_{a}^{b}}f:=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])} & \text{ y } & \overline{\int_{a}^{b}}f:=\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])} +\underline{\int_{a}^{b}}f:=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])} & \text{ y } & \overline{\int_{a}^{b}}f\mid =\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])} \end{eqnarray*} \end_inset diff --git a/fuvr2/n3.lyx b/fuvr2/n3.lyx index 5d9c1ab..9db6cf2 100644 --- a/fuvr2/n3.lyx +++ b/fuvr2/n3.lyx @@ -489,7 +489,7 @@ Vemos que \begin_layout Standard El conjunto -\begin_inset Formula $\{x>0:\cos x=0\}$ +\begin_inset Formula $\{x>0\mid \cos x=0\}$ \end_inset es no vacío y de hecho tiene un primer elemento, que se denota @@ -91,7 +91,7 @@ Teorema de Cauchy-Goursat: \end_inset y -\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c:\mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$ +\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$ \end_inset , entonces @@ -1583,7 +1583,7 @@ Sean \end_inset y -\begin_inset Formula $H:=\{z\in\mathbb{C}:d(z,K)\leq\rho\}$ +\begin_inset Formula $H:=\{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$ \end_inset , con lo que @@ -87,7 +87,7 @@ Sean \end_inset y -\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$ +\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ \end_inset , @@ -210,7 +210,7 @@ status open \end_inset Sea -\begin_inset Formula $A:=\{z\in\Omega:\forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ +\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ \end_inset , pues @@ -221,7 +221,7 @@ status open Como \begin_inset Formula \[ -A=\bigcap_{k=0}^{\infty}\{z\in\Omega:f^{(k)}(z)=0\}, +A=\bigcap_{k=0}^{\infty}\{z\in\Omega\mid f^{(k)}(z)=0\}, \] \end_inset @@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas \end_inset no es idénticamente nula, entonces todo punto de -\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$ +\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ \end_inset es aislado y @@ -377,7 +377,7 @@ cero orden \series default -\begin_inset Formula $\min\{n\in\mathbb{N}:f^{(n)}(a)\neq0\}$ +\begin_inset Formula $\min\{n\in\mathbb{N}\mid f^{(n)}(a)\neq0\}$ \end_inset . @@ -968,7 +968,7 @@ f'(z) & \text{si }z=w. \end_inset es continua en -\begin_inset Formula $\{(z,w)\in\Omega\times\Omega:z\neq w\}$ +\begin_inset Formula $\{(z,w)\in\Omega\times\Omega\mid z\neq w\}$ \end_inset . @@ -1083,7 +1083,7 @@ Ahora bien, fijado \begin_layout Standard Sea -\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$ +\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$ \end_inset , que es abierto por ser unión de componentes conexas de @@ -1834,7 +1834,7 @@ Sean \end_inset , entonces -\begin_inset Formula $\{a\in S:\text{Ind}_{\Gamma}(a)\neq0\}$ +\begin_inset Formula $\{a\in S\mid \text{Ind}_{\Gamma}(a)\neq0\}$ \end_inset es finito y @@ -1854,7 +1854,7 @@ Sean Demostración: \series default Sea -\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$ +\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$ \end_inset , que es abierto por ser unión de componentes conexas de @@ -1886,7 +1886,7 @@ status open . Sea -\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)\neq0\}$ +\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$ \end_inset , que es cerrado por ser complementario de un abierto y acotado porque no @@ -1896,7 +1896,7 @@ status open , luego es compacto. Si -\begin_inset Formula $S\cap K=\{a\in S:\text{Ind}_{\Gamma}(z)\neq0\}$ +\begin_inset Formula $S\cap K=\{a\in S\mid \text{Ind}_{\Gamma}(z)\neq0\}$ \end_inset no fuera finito, tendría un punto de acumulación que, por compacidad, debería diff --git a/fvv1/n1.lyx b/fvv1/n1.lyx index 41aa455..e3422b2 100644 --- a/fvv1/n1.lyx +++ b/fvv1/n1.lyx @@ -163,7 +163,7 @@ Ejemplos de normas en . Además, -\begin_inset Formula $V:={\cal C}[a,b]:=\{f:[a,b]\rightarrow\mathbb{R}\text{ continua}\}$ +\begin_inset Formula $V:={\cal C}[a,b]:=\{f\mid [a,b]\rightarrow\mathbb{R}\text{ continua}\}$ \end_inset con @@ -706,7 +706,7 @@ teorema , que es continua por ser composición de dos funciones continuas (la identidad es continua por la otra cota y la demostración del teorema anterior), entonces -\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}:\Vert x\Vert_{1}=1\}$ +\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}\mid \Vert x\Vert_{1}=1\}$ \end_inset es cerrado dentro del compacto diff --git a/fvv1/n2.lyx b/fvv1/n2.lyx index 14dd50a..1b761e2 100644 --- a/fvv1/n2.lyx +++ b/fvv1/n2.lyx @@ -897,7 +897,7 @@ to por abiertos de \end_inset y -\begin_inset Formula $\{B_{i}\}_{i=1}^{k}:=\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$ +\begin_inset Formula $\{B_{i}\}_{i=1}^{k}\mid =\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$ \end_inset un subrecubrimiento finito del que suponemos que no podemos quitar ninguna diff --git a/fvv1/n3.lyx b/fvv1/n3.lyx index 776351a..91f5019 100644 --- a/fvv1/n3.lyx +++ b/fvv1/n3.lyx @@ -840,7 +840,7 @@ suponiendo . Pero -\begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}:\Vert y\Vert=1\}=:K$ +\begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}\mid \Vert y\Vert=1\}=:K$ \end_inset , que es compacto por ser cerrado y acotado, y diff --git a/fvv1/n4.lyx b/fvv1/n4.lyx index 07fa28a..f95baae 100644 --- a/fvv1/n4.lyx +++ b/fvv1/n4.lyx @@ -104,7 +104,7 @@ implícita un abierto. La región -\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}:f(x_{1},\dots,x_{n})=0\}$ +\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}\mid f(x_{1},\dots,x_{n})=0\}$ \end_inset está @@ -459,7 +459,7 @@ Si \end_inset está dado en forma implícita como -\begin_inset Formula $\{x\in{\cal U}:g(x)=0\}$ +\begin_inset Formula $\{x\in{\cal U}\mid g(x)=0\}$ \end_inset , donde diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx index 7f67d1f..e7eda47 100644 --- a/fvv2/n1.lyx +++ b/fvv2/n1.lyx @@ -208,7 +208,7 @@ gráfica a \begin_inset Formula \[ -\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\} +\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\} \] \end_inset @@ -221,7 +221,7 @@ subgrafo \begin_inset Formula \begin{multline*} \text{subgraf}(f):=\\ -\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\} +\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\} \end{multline*} \end_inset @@ -1452,7 +1452,7 @@ Sea \end_inset , -\begin_inset Formula $B:=\{x\in A:\text{osc}(f,x)\geq\varepsilon\}$ +\begin_inset Formula $B:=\{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$ \end_inset es cerrado. @@ -1539,7 +1539,7 @@ teorema de Lebesgue de caracterización de las funciones integrables \end_inset si y sólo si -\begin_inset Formula $B:=\{x\in R:f\text{ no es continua en }x\}$ +\begin_inset Formula $B:=\{x\in R\mid f\text{ no es continua en }x\}$ \end_inset tiene medida nula. @@ -1559,7 +1559,7 @@ status open \end_inset Sea -\begin_inset Formula $B_{k}:=\{x\in R:o(f,x)\geq\frac{1}{k}\}$ +\begin_inset Formula $B_{k}:=\{x\in R\mid o(f,x)\geq\frac{1}{k}\}$ \end_inset , basta probar que cada diff --git a/fvv2/n2.lyx b/fvv2/n2.lyx index 56b1b12..bd555e8 100644 --- a/fvv2/n2.lyx +++ b/fvv2/n2.lyx @@ -654,7 +654,7 @@ espacio de medida \end_inset -finita si y sólo si -\begin_inset Formula $\{x\in\Omega:f(x)>0\}$ +\begin_inset Formula $\{x\in\Omega\mid f(x)>0\}$ \end_inset es numerable. @@ -889,7 +889,7 @@ medida exterior como \begin_inset Formula \[ -\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k})):B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\} +\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k}))\mid B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\} \] \end_inset @@ -1146,7 +1146,7 @@ Para \end_inset , y por tanto -\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A):A\supseteq S\text{ abierto}\}$ +\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A)\mid A\supseteq S\text{ abierto}\}$ \end_inset . diff --git a/fvv2/n3.lyx b/fvv2/n3.lyx index a35f67f..11ac40c 100644 --- a/fvv2/n3.lyx +++ b/fvv2/n3.lyx @@ -172,7 +172,7 @@ status open \end_inset Sea -\begin_inset Formula ${\cal A}:=\{E\in\Sigma':f^{-1}(E)\in\Sigma\}$ +\begin_inset Formula ${\cal A}:=\{E\in\Sigma'\mid f^{-1}(E)\in\Sigma\}$ \end_inset , vemos que @@ -627,7 +627,7 @@ Una función \end_inset y la notación -\begin_inset Formula $\{f\bullet a\}:=\{\omega\in\Omega:f(\omega)\bullet a\}$ +\begin_inset Formula $\{f\bullet a\}\mid =\{\omega\in\Omega\mid f(\omega)\bullet a\}$ \end_inset . @@ -1554,7 +1554,7 @@ Sea \end_inset y -\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega):h\geq0\}$ +\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega)\mid h\geq0\}$ \end_inset , llamamos @@ -1719,7 +1719,7 @@ Para medible, se define \begin_inset Formula \[ -\int f\,d\mu:=\sup\left\{ \int s\,d\mu:s\in{\cal S}(\Omega)\land0\leq s\leq f\right\} +\int f\,d\mu:=\sup\left\{ \int s\,d\mu\mid s\in{\cal S}(\Omega)\land0\leq s\leq f\right\} \] \end_inset @@ -2236,7 +2236,7 @@ Una función medible \end_inset , si y sólo si -\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}:\Omega\rightarrow[-\infty,+\infty]$ +\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}\mid \Omega\rightarrow[-\infty,+\infty]$ \end_inset son integrables, y definimos @@ -3315,11 +3315,11 @@ Demostración: \end_inset es continua, y como -\begin_inset Formula $\delta:=\min\{d(x,K):x\notin A\}>0$ +\begin_inset Formula $\delta:=\min\{d(x,K)\mid x\notin A\}>0$ \end_inset , -\begin_inset Formula $A_{0}:=\{x:d(x,K)<\frac{\delta}{2}\}$ +\begin_inset Formula $A_{0}:=\{x\mid d(x,K)<\frac{\delta}{2}\}$ \end_inset es un abierto acotado con @@ -3328,7 +3328,7 @@ Demostración: . Tomando -\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x:d(x,K)\geq\frac{\delta}{2}\}$ +\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x\mid d(x,K)\geq\frac{\delta}{2}\}$ \end_inset , podemos definir diff --git a/fvv2/n4.lyx b/fvv2/n4.lyx index 6628b45..2db00c5 100644 --- a/fvv2/n4.lyx +++ b/fvv2/n4.lyx @@ -360,7 +360,7 @@ teorema \end_inset es acotada y -\begin_inset Formula $D(f):=\{x\in[a,b]:f\text{ es discontinua en }x\}$ +\begin_inset Formula $D(f):=\{x\in[a,b]\mid f\text{ es discontinua en }x\}$ \end_inset , entonces diff --git a/fvv3/n.pdf b/fvv3/n.pdf Binary files differdeleted file mode 100644 index 397a272..0000000 --- a/fvv3/n.pdf +++ /dev/null @@ -2271,7 +2271,7 @@ Dado un espacio topológico \end_inset , -\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$ +\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$ \end_inset es un subanillo de @@ -2287,7 +2287,7 @@ Dado un espacio vectorial \end_inset , -\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$ +\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$ \end_inset es un subanillo de @@ -2307,7 +2307,7 @@ Dado un anillo \end_inset , -\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$ +\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$ \end_inset es un subanillo de @@ -3944,7 +3944,7 @@ Demostración: \end_inset , pues -\begin_inset Formula $\pi^{-1}(J/I)=\{x:\pi(x)=[x]\in J/I\}$ +\begin_inset Formula $\pi^{-1}(J/I)=\{x\mid\pi(x)=[x]\in J/I\}$ \end_inset , pero si @@ -4005,7 +4005,7 @@ Ahora vemos que, dado un ideal \end_inset , -\begin_inset Formula $\pi^{-1}(X)=\{x:[x]\in X\}\ni0$ +\begin_inset Formula $\pi^{-1}(X)=\{x\mid[x]\in X\}\ni0$ \end_inset ; para @@ -4058,7 +4058,7 @@ Ahora vemos que, dado un ideal . Además, -\begin_inset Formula $\pi^{-1}(X)/I=\{x:[x]\in X\}/I=\{[x]:[x]\in X\}=X$ +\begin_inset Formula $\pi^{-1}(X)/I=\{x\mid[x]\in X\}/I=\{[x]\mid[x]\in X\}=X$ \end_inset . @@ -4185,8 +4185,8 @@ La intersección de una familia de ideales de , definimos los ideales \begin_inset Formula \begin{eqnarray*} -\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}:S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\ -\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}:n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} . +\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}\;\middle|\;S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\ +\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}\;\middle|\;n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} . \end{eqnarray*} \end_inset @@ -4257,7 +4257,7 @@ En efecto, \end_inset , -\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$ +\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}\mid n,m|k\}=\{k\mid\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$ \end_inset y @@ -2668,7 +2668,7 @@ Si . Veamos que -\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x:|N(x)|=1\}$ +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x\mid |N(x)|=1\}$ \end_inset . @@ -3376,7 +3376,7 @@ euclídea \end_layout \begin_layout Enumerate -\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ +\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ \end_inset . @@ -169,11 +169,11 @@ polinomios constantes \end_inset , -\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$ +\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$ \end_inset e -\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$ +\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$ \end_inset son ideales de @@ -197,7 +197,7 @@ grado \end_inset a -\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$ +\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ \end_inset , @@ -1570,7 +1570,7 @@ Para \end_inset , existe -\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$ +\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$ \end_inset @@ -3473,7 +3473,7 @@ Definimos \end_inset , -\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$ +\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ \end_inset , y para @@ -4641,7 +4641,7 @@ Demostración: \end_inset , luego existe -\begin_inset Formula $i:=\min\{j:p\nmid b_{j}\}$ +\begin_inset Formula $i:=\min\{j\mid p\nmid b_{j}\}$ \end_inset y entonces @@ -745,7 +745,7 @@ Si \end_inset es una familia de grupos, -\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$ +\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$ \end_inset es un subgrupo de @@ -773,7 +773,7 @@ centralizador \end_inset es el subgrupo -\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$ +\begin_inset Formula $C_{G}(x):=\{g\in G\mid gx=xg\}$ \end_inset , y el @@ -785,7 +785,7 @@ centro \end_inset es el subgrupo abeliano -\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ +\begin_inset Formula $Z(G):=\{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ \end_inset . @@ -2973,7 +2973,7 @@ estabilizador \end_inset a -\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid g\cdot x=x\}$ \end_inset . @@ -3014,7 +3014,7 @@ estabilizador \end_inset a -\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid x\cdot g=x\}$ \end_inset . @@ -3050,7 +3050,7 @@ acción por translación a la izquierda y \begin_inset Formula \[ -\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}. +\text{Estab}_{G}(xH)=\{g\in G\mid gxH=xH\}=\{g\in G\mid x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}. \] \end_inset @@ -3170,7 +3170,7 @@ normalizador \end_inset es -\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$ +\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$ \end_inset , el mayor subgrupo de @@ -3393,12 +3393,12 @@ status open \begin_layout Plain Layout Si la acción es por la izquierda, -\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$ +\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}\mid h\cdot x=x\}=\{p\in G\mid g^{-1}pg\cdot x=x\}=\{p\in G\mid p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$ \end_inset . Si es por la derecha, -\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$ +\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$ \end_inset . @@ -3606,7 +3606,7 @@ status open Demostración: \series default Sea -\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$ +\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$ \end_inset , @@ -98,7 +98,7 @@ suma \end_inset a -\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}:b_{i}\in B_{i},\{i\in I:b_{i}\neq0\}\text{ es finito}\}$ +\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}\mid b_{i}\in B_{i},\{i\in I\mid b_{i}\neq0\}\text{ es finito}\}$ \end_inset . @@ -453,7 +453,7 @@ Para \end_inset con -\begin_inset Formula $\{i\in I:b_{i}\neq0\}$ +\begin_inset Formula $\{i\in I\mid b_{i}\neq0\}$ \end_inset finito. @@ -704,7 +704,7 @@ subgrupo de es \begin_inset Formula \[ -t_{p}(A):=\{a\in A:\exists n\in\mathbb{N}:p^{n}a=0\}=\{a\in A:|a|\text{ es potencia de }p\}. +t_{p}(A):=\{a\in A\mid \exists n\in\mathbb{N}\mid p^{n}a=0\}=\{a\in A\mid |a|\text{ es potencia de }p\}. \] \end_inset @@ -168,7 +168,7 @@ mueve \series default en caso contrario. Llamamos -\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}:\sigma(i)\neq i\}$ +\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}\mid \sigma(i)\neq i\}$ \end_inset , y es claro que @@ -718,7 +718,7 @@ punto fijo , y definimos \begin_inset Formula \[ -\text{Fix}(f):=\{Q\in{\cal E}:f(Q)=Q\} +\text{Fix}(f):=\{Q\in{\cal E}\mid f(Q)=Q\} \] \end_inset @@ -755,7 +755,7 @@ vectores invariantes o asociado al autovalor 1, \begin_inset Formula \[ -\text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V:\phi(\vec{v})=\vec{v}\} +\text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=\vec{v}\} \] \end_inset @@ -771,7 +771,7 @@ opuestos , \begin_inset Formula \[ -\text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V:\phi(\vec{v})=-\vec{v}\} +\text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=-\vec{v}\} \] \end_inset @@ -1647,11 +1647,11 @@ distancia orientada \end_inset en dos semiplanos -\begin_inset Formula $H^{+}:=\{p:\text{dist}(p,\ell)\geq0\}$ +\begin_inset Formula $H^{+}:=\{p\mid \text{dist}(p,\ell)\geq0\}$ \end_inset y -\begin_inset Formula $H^{-}:=\{p:\text{dist}(p,\ell)\leq0\}$ +\begin_inset Formula $H^{-}:=\{p\mid \text{dist}(p,\ell)\leq0\}$ \end_inset , de modo que @@ -2984,7 +2984,7 @@ Sean \end_inset y -\begin_inset Formula $J:=\{t\in I:\alpha(t)\in V\}$ +\begin_inset Formula $J:=\{t\in I\mid \alpha(t)\in V\}$ \end_inset , entonces @@ -4304,7 +4304,7 @@ Sean \end_inset y -\begin_inset Formula $A:=\{p\in S:f(p)=a\}\neq\emptyset$ +\begin_inset Formula $A:=\{p\in S\mid f(p)=a\}\neq\emptyset$ \end_inset , pues @@ -4698,7 +4698,7 @@ Dados \end_inset , el cilindro -\begin_inset Formula $C:=\{(x,y,z):x^{2}+y^{2}=r^{2}\}$ +\begin_inset Formula $C:=\{(x,y,z)\mid x^{2}+y^{2}=r^{2}\}$ \end_inset y la parametrización @@ -472,7 +472,7 @@ Sea \end_inset es la superficie de nivel -\begin_inset Formula $\{p:f(p)=r^{2}\}$ +\begin_inset Formula $\{p\mid f(p)=r^{2}\}$ \end_inset , luego admite la orientación @@ -1018,7 +1018,7 @@ Los cilindros se obtienen por un movimiento de \end_inset , -\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0):x^{2}+y^{2}=r^{2}\}=\{(x,y,0):x^{2}+y^{2}=1\}$ +\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0)\mid x^{2}+y^{2}=r^{2}\}=\{(x,y,0)\mid x^{2}+y^{2}=1\}$ \end_inset . @@ -2275,7 +2275,7 @@ El cilindro \begin_deeper \begin_layout Standard Sean -\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v):=(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$ +\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\mid =(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$ \end_inset , @@ -2635,7 +2635,7 @@ status open \begin_layout Plain Layout La superficie es el grafo -\begin_inset Formula $S:=\{X(u,v):=(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$ +\begin_inset Formula $S:=\{X(u,v)\mid =(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$ \end_inset , de modo que @@ -569,7 +569,7 @@ intervalo maximal de existencia Demostración: \series default Sea -\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha):\alpha:I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$ +\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$ \end_inset . @@ -669,7 +669,7 @@ Sean ahora es abierto y, por el teorema del peine, también conexo, luego es un intervalo. Sea -\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}:\alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$ +\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$ \end_inset , y queremos ver que @@ -1401,7 +1401,7 @@ geodésicamente completa \begin_layout Enumerate Dado el plano -\begin_inset Formula $S=\{p\in\mathbb{R}^{3}:\langle p,a\rangle=c\}$ +\begin_inset Formula $S=\{p\in\mathbb{R}^{3}\mid \langle p,a\rangle=c\}$ \end_inset , la geodésica maximal de @@ -1579,7 +1579,7 @@ Sean \end_inset , -\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=r^{2}\}$ +\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$ \end_inset un cilindro, @@ -110,7 +110,7 @@ aplicación exponencial \end_inset donde -\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S:1\in I_{v}\}$ +\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$ \end_inset . @@ -909,7 +909,7 @@ Sean \end_inset tal que -\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S:\Vert v\Vert<r\}\subseteq{\cal D}_{p}$ +\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$ \end_inset , llamamos @@ -933,7 +933,7 @@ disco geodésico \end_inset cumple que -\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S:\Vert v\Vert=r\}\subseteq{\cal D}_{p}$ +\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$ \end_inset , llamamos @@ -1099,7 +1099,7 @@ Sean \end_inset , luego -\begin_inset Formula $t_{0}=\max\{t\in[a,b]:\alpha(t)=p_{0}\}<b$ +\begin_inset Formula $t_{0}=\max\{t\in[a,b]\mid \alpha(t)=p_{0}\}<b$ \end_inset (pues @@ -1422,7 +1422,7 @@ Finalmente, sea es \begin_inset Formula \[ -A:=\{t\in(a,b):\Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]:\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset. +A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid \alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset. \] \end_inset @@ -258,7 +258,7 @@ Demostración: \begin_layout Standard Primero vemos que -\begin_inset Formula $A:=\{q\in S:\Omega(p,q)\neq\emptyset\}=S$ +\begin_inset Formula $A:=\{q\in S\mid \Omega(p,q)\neq\emptyset\}=S$ \end_inset viendo que es abierto, cerrado y no vacío. @@ -750,7 +750,7 @@ Queremos ver que \end_inset , existe -\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]:\alpha(t)\notin D(p,r^{*})\}$ +\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]\mid \alpha(t)\notin D(p,r^{*})\}$ \end_inset , pero @@ -229,7 +229,7 @@ Demostración: \end_inset y -\begin_inset Formula $A:=\{t\in[0,1]:\tilde{\alpha}(t)=tw\}$ +\begin_inset Formula $A:=\{t\in[0,1]\mid \tilde{\alpha}(t)=tw\}$ \end_inset , queremos ver que @@ -273,7 +273,7 @@ soporte \end_inset es -\begin_inset Formula $\text{sop}f:=\overline{\{x\in D:f(x)\neq0\}}$ +\begin_inset Formula $\text{sop}f:=\overline{\{x\in D\mid f(x)\neq0\}}$ \end_inset . diff --git a/graf/n1.lyx b/graf/n1.lyx index c547ff0..921c7d8 100644 --- a/graf/n1.lyx +++ b/graf/n1.lyx @@ -119,7 +119,7 @@ grafo no dirigido \end_inset definido de forma similar, pero -\begin_inset Formula $E\subseteq\{S\in{\cal P}(V):|S|\in\{1,2\}\}$ +\begin_inset Formula $E\subseteq\{S\in{\cal P}(V)\mid |S|\in\{1,2\}\}$ \end_inset es un conjunto de @@ -136,7 +136,7 @@ ejes \end_inset a uno dirigido -\begin_inset Formula $(V,\{(i,j)\in V\times V:i,j\in E\})$ +\begin_inset Formula $(V,\{(i,j)\in V\times V\mid i,j\in E\})$ \end_inset . @@ -340,7 +340,7 @@ grafo complementario es \begin_inset Formula \[ -G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V):|S|=2,S\notin E\}). +G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\}). \] \end_inset @@ -408,7 +408,7 @@ inducido \end_inset , donde -\begin_inset Formula $E_{V'}:=\{S\in E:S\subseteq V'\}$ +\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$ \end_inset , y @@ -680,7 +680,7 @@ teorema pues \begin_inset Formula \[ -\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E:v\in S\}|=\sum_{S\in E}|S|=2|E|. +\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E\mid v\in S\}|=\sum_{S\in E}|S|=2|E|. \] \end_inset diff --git a/graf/n2.lyx b/graf/n2.lyx index eb5661f..9d905d7 100644 --- a/graf/n2.lyx +++ b/graf/n2.lyx @@ -2145,7 +2145,7 @@ grafo en línea \end_inset y -\begin_inset Formula $E^{L}:=\{(e,f):e\neq f,e\cap f\neq\emptyset\}$ +\begin_inset Formula $E^{L}:=\{(e,f)\mid e\neq f,e\cap f\neq\emptyset\}$ \end_inset . diff --git a/graf/n4.lyx b/graf/n4.lyx index 6674531..5334582 100644 --- a/graf/n4.lyx +++ b/graf/n4.lyx @@ -1782,11 +1782,11 @@ Si . Sean ahora -\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}:(u_{i},v)\in E_{k}\}$ +\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}\mid (u_{i},v)\in E_{k}\}$ \end_inset e -\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}:(u_{i+1},u)\in E_{k}\}$ +\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}\mid (u_{i+1},u)\in E_{k}\}$ \end_inset , se tiene diff --git a/graf/n6.lyx b/graf/n6.lyx index e296d0b..6bf574a 100644 --- a/graf/n6.lyx +++ b/graf/n6.lyx @@ -222,11 +222,11 @@ teorema \end_inset , -\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}:Ax+Gy\leq b\}$ +\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$ \end_inset y -\begin_inset Formula $S:=\{[x,y]\in P:x\in\mathbb{Z}^{p}\}$ +\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$ \end_inset , existen @@ -242,7 +242,7 @@ teorema \end_inset tales que -\begin_inset Formula $\text{ec}S=\{[x,y]:A'x+G'y\leq b'\}$ +\begin_inset Formula $\text{ec}S=\{[x,y]\mid A'x+G'y\leq b'\}$ \end_inset . @@ -253,11 +253,11 @@ teorema Demostración: \series default Sean -\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}:y\leq\sqrt{2}x,x\geq0,y\geq0\}$ +\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$ \end_inset y -\begin_inset Formula $C:=\{(x,y):y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$ +\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$ \end_inset . @@ -406,7 +406,7 @@ Sean \end_inset y -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:Ax\leq b\}$ +\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$ \end_inset , si @@ -706,7 +706,7 @@ Lema de Veinott-Dantzig: \end_inset , -\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}:Ax=b,x\geq0\}$ +\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$ \end_inset es entero. @@ -913,7 +913,7 @@ Teorema de Hoffman-Kruskal: \end_inset , el poliedro -\begin_inset Formula $\{x\in\mathbb{R}^{n}:Ax\leq b,x\geq0\}$ +\begin_inset Formula $\{x\in\mathbb{R}^{n}\mid Ax\leq b,x\geq0\}$ \end_inset es entero. @@ -978,7 +978,7 @@ Dada una submatriz \end_inset es unimodular, con lo que -\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}:Ax+Iy=b,[x,y]\geq0\}$ +\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$ \end_inset es entero. @@ -1003,7 +1003,7 @@ Dada una submatriz \end_inset es -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$ +\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$ \end_inset . @@ -1069,11 +1069,11 @@ Sean \end_inset , -\begin_inset Formula $P:=\{x:Ax\leq b,x\geq0\}$ +\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$ \end_inset , -\begin_inset Formula $Q:=\{[x,y]:Ax+y=b,[x,y]\geq0\}$ +\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$ \end_inset y @@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la \begin_layout Standard Para el problema del viajante de comercio sobre una red completa -\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E:=\{\{i,j\}\}_{i,j\in V,i\neq j},d)$ +\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$ \end_inset , existen varias formulaciones: @@ -1783,7 +1783,7 @@ es & \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\ & & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 & & \forall i\\ & & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 & & \forall i\\ - & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\ + & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\ & & x_{ij} & \in\{0,1\} & & \forall i,j\\ & & u_{i} & \in\mathbb{R}^{>0} & & \forall i \end{alignat*} diff --git a/graf/n7.lyx b/graf/n7.lyx index 04fd675..dc0abb4 100644 --- a/graf/n7.lyx +++ b/graf/n7.lyx @@ -850,7 +850,7 @@ regla de Bland: \end_inset , -\begin_inset Formula $F:=\{x:Ax=b,x\geq0\}$ +\begin_inset Formula $F:=\{x\mid Ax=b,x\geq0\}$ \end_inset y @@ -888,7 +888,7 @@ Si [...] \end_inset es la matriz formada por las columnas añadidas, escribimos -\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$ +\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$ \end_inset y vemos que @@ -921,7 +921,7 @@ vector de variables artificiales Método de las dos fases: \series default ] La primera fase consiste en hallar -\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$ +\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$ \end_inset . @@ -188,6 +188,13 @@ TerminateProcess en Windows. \end_layout +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + \begin_layout Section Estados \end_layout @@ -359,7 +366,32 @@ Bloqueado \begin_inset Quotes frd \end_inset -, si el proces, ueado suspendido +, si el proceso hace una llamada al sistema que no se puede responder inmediatam +ente. +\end_layout + +\begin_layout Itemize +De +\begin_inset Quotes cld +\end_inset + +Bloqueado +\begin_inset Quotes crd +\end_inset + + a +\begin_inset Quotes cld +\end_inset + +Listo +\begin_inset Quotes crd +\end_inset + + o de +\begin_inset Quotes cld +\end_inset + +Bloqueado suspendido \begin_inset Quotes frd \end_inset @@ -435,6 +467,18 @@ Implementación \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + El SO mantiene una \series bold tabla de procesos @@ -464,6 +508,22 @@ administración de procesos usado de CPU. \end_layout +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + \begin_layout Itemize Para \series bold @@ -882,6 +942,22 @@ Diagrama de Gantt. \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Algoritmos no apropiativos: \end_layout @@ -972,6 +1048,22 @@ maduración \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Algoritmos apropiativos: \end_layout @@ -489,7 +489,7 @@ Sean \end_inset y -\begin_inset Formula $F'\coloneqq\{r\in Q':r\cap F\neq\emptyset\}$ +\begin_inset Formula $F'\coloneqq\{r\in Q'\mid r\cap F\neq\emptyset\}$ \end_inset . @@ -1807,7 +1807,7 @@ Sean \[ \delta'(q,r)\coloneqq\begin{cases} \epsilon, & (q,r)=(q_{0},q_{1})\lor(q\in F\land r=q_{\text{F}});\\ -a_{1}\mid\dots\mid a_{k}, & \{a\in\Sigma:r\in\delta(q,a)\}=\{a_{1},\dots,a_{k}\}\neq\emptyset;\\ +a_{1}\mid\dots\mid a_{k}, & \{a\in\Sigma\mid r\in\delta(q,a)\}=\{a_{1},\dots,a_{k}\}\neq\emptyset;\\ \emptyset, & \text{en otro caso}. \end{cases} \] @@ -602,7 +602,7 @@ variable inicial \end_inset , donde -\begin_inset Formula $\{w_{1},\dots,w_{n}\}=\{w:(T,w)\in V\}$ +\begin_inset Formula $\{w_{1},\dots,w_{n}\}=\{w\mid (T,w)\in V\}$ \end_inset . @@ -668,7 +668,7 @@ lenguaje generado \end_inset es -\begin_inset Formula $L(G)\coloneqq\{w\in\Sigma^{*}:S\Rightarrow^{*}w\}$ +\begin_inset Formula $L(G)\coloneqq\{w\in\Sigma^{*}\mid S\Rightarrow^{*}w\}$ \end_inset . @@ -439,7 +439,7 @@ input \end_inset que reconoce -\begin_inset Formula $K\coloneqq\{\langle{\cal A},w\rangle:\text{la MT \ensuremath{{\cal A}} acepta \ensuremath{w}}\}$ +\begin_inset Formula $K\coloneqq\{\langle{\cal A},w\rangle\mid \text{la MT \ensuremath{{\cal A}} acepta \ensuremath{w}}\}$ \end_inset . @@ -1953,7 +1953,7 @@ Algunos lenguajes decidibles: \end_layout \begin_layout Enumerate -\begin_inset Formula $\text{Acc}^{\text{DFA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el DFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$ +\begin_inset Formula $\text{Acc}^{\text{DFA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el DFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$ \end_inset . @@ -2044,7 +2044,7 @@ fun m q0 finals w -> contains (==) (sim m w q0) finals \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{Acc}^{\text{NFA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el NFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$ +\begin_inset Formula $\text{Acc}^{\text{NFA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el NFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$ \end_inset . @@ -2275,7 +2275,7 @@ fun (states, syms, m, r0, finals) -> \end_layout \begin_layout Enumerate -\begin_inset Formula $\text{Acc}^{\text{PDA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el PDA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$ +\begin_inset Formula $\text{Acc}^{\text{PDA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el PDA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$ \end_inset . @@ -2322,7 +2322,7 @@ forma normal de Chomsky \end_layout \begin_layout Enumerate -\begin_inset Formula $\text{Empty}^{\text{DFA}}\coloneqq\{\langle{\cal A}\rangle:\text{el DFA }{\cal A}\text{ no acepta ninguna cadena}\}$ +\begin_inset Formula $\text{Empty}^{\text{DFA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el DFA }{\cal A}\text{ no acepta ninguna cadena}\}$ \end_inset . @@ -2433,7 +2433,7 @@ fun (trans, q0, finals) -> anystring trans finals nil (cons q0 nil) \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{Empty}^{\text{NFA}}\coloneqq\{\langle{\cal A}\rangle:\text{el NFA }{\cal A}\text{ no acepta ninguna cadena}\}$ +\begin_inset Formula $\text{Empty}^{\text{NFA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el NFA }{\cal A}\text{ no acepta ninguna cadena}\}$ \end_inset . @@ -2446,7 +2446,7 @@ Análogo. \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{Empty}^{\text{PDA}}\coloneqq\{\langle{\cal A}\rangle:\text{el PDA }{\cal A}\text{ no acepta ninguna cadena}\}$ +\begin_inset Formula $\text{Empty}^{\text{PDA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el PDA }{\cal A}\text{ no acepta ninguna cadena}\}$ \end_inset . @@ -2610,7 +2610,7 @@ Demostración: \end_inset , sea -\begin_inset Formula $B\coloneqq\{x\in A:x\notin f(x)\}$ +\begin_inset Formula $B\coloneqq\{x\in A\mid x\notin f(x)\}$ \end_inset , existe @@ -2767,7 +2767,7 @@ status open \begin_layout Standard \begin_inset Formula \[ -K\coloneqq\{\langle{\cal M},w\rangle:\text{la MT }{\cal M}\text{ acepta con entrada }w\}\in{\cal RE}\setminus{\cal DEC}. +K\coloneqq\{\langle{\cal M},w\rangle\mid \text{la MT }{\cal M}\text{ acepta con entrada }w\}\in{\cal RE}\setminus{\cal DEC}. \] \end_inset @@ -2806,7 +2806,7 @@ Demostración: \end_inset que decide -\begin_inset Formula $\{\langle{\cal M}\rangle:{\cal H}\text{ rechaza }\langle{\cal M},\langle{\cal M}\rangle\rangle\}$ +\begin_inset Formula $\{\langle{\cal M}\rangle\mid {\cal H}\text{ rechaza }\langle{\cal M},\langle{\cal M}\rangle\rangle\}$ \end_inset , pero entonces @@ -327,7 +327,7 @@ Problema de la parada. \begin_inset Formula \[ -\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle:{\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}. +\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle\mid {\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}. \] \end_inset @@ -380,7 +380,7 @@ mapping \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$ +\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle\mid {\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$ \end_inset . @@ -454,7 +454,7 @@ mapping \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle:{\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$ +\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle\mid {\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$ \end_inset . @@ -674,7 +674,7 @@ Teorema de Rice: no trivial, \begin_inset Formula \[ -{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}. +{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle\mid {\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}. \] \end_inset @@ -1113,7 +1113,7 @@ Están en \end_layout \begin_layout Enumerate -\begin_inset Formula $\text{RELPRIM}\coloneqq\{\langle x,y\rangle:x,y\in\mathbb{N}\text{ son primos relativos}\}$ +\begin_inset Formula $\text{RELPRIM}\coloneqq\{\langle x,y\rangle\mid x,y\in\mathbb{N}\text{ son primos relativos}\}$ \end_inset . @@ -1192,7 +1192,7 @@ noprefix "false" \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{PATH}\coloneqq\{\langle G,s,t\rangle:G\text{ es un grafo dirigido con un camino de }s\text{ a }t\}$ +\begin_inset Formula $\text{PATH}\coloneqq\{\langle G,s,t\rangle\mid G\text{ es un grafo dirigido con un camino de }s\text{ a }t\}$ \end_inset . @@ -1251,7 +1251,7 @@ Se añade el nodo \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{4-CLIQUE}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido con una 4-clique}\}$ +\begin_inset Formula $\text{4-CLIQUE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido con una 4-clique}\}$ \end_inset . @@ -1287,7 +1287,7 @@ Si \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{EULCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo dirigido con un ciclo euleriano}\}$ +\begin_inset Formula $\text{EULCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo dirigido con un ciclo euleriano}\}$ \end_inset . @@ -1317,7 +1317,7 @@ Un teorema de Euler dice que un grafo dirigido \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{2-COLOR}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido bipartito}\}$ +\begin_inset Formula $\text{2-COLOR}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido bipartito}\}$ \end_inset . @@ -1562,7 +1562,7 @@ verificador \end_inset tal que -\begin_inset Formula $L=\{w:\exists c:V\text{ acepta }\langle w,c\rangle\}$ +\begin_inset Formula $L=\{w\mid \exists c\mid V\text{ acepta }\langle w,c\rangle\}$ \end_inset . @@ -408,7 +408,7 @@ satisfacible Definimos \begin_inset Formula \[ -\text{SAT}\coloneqq\text{SAT}_{0}\coloneqq\text{SAT}_{\text{LP}}\coloneqq\{\langle\Phi\rangle:\Phi\text{ es una fórmula booleana satisfacible}\}. +\text{SAT}\coloneqq\text{SAT}_{0}\coloneqq\text{SAT}_{\text{LP}}\coloneqq\{\langle\Phi\rangle\mid \Phi\text{ es una fórmula booleana satisfacible}\}. \] \end_inset @@ -1039,7 +1039,7 @@ Son \end_layout \begin_layout Enumerate -\begin_inset Formula $\text{CLIQUE}\coloneqq\{\langle G,k\rangle:G\text{ es grafo no dirigido con }k\text{-clique}\}$ +\begin_inset Formula $\text{CLIQUE}\coloneqq\{\langle G,k\rangle\mid G\text{ es grafo no dirigido con }k\text{-clique}\}$ \end_inset . @@ -1209,7 +1209,7 @@ La función de conversión de \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{HAMPATH}\coloneqq\{\langle G,s,t\rangle:G\text{ es un grafo dirigido con camino hamiltoniano de }s\text{ a }t\}$ +\begin_inset Formula $\text{HAMPATH}\coloneqq\{\langle G,s,t\rangle\mid G\text{ es un grafo dirigido con camino hamiltoniano de }s\text{ a }t\}$ \end_inset . @@ -1607,7 +1607,7 @@ La función de conversión de \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{HAMCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo dirigido con un ciclo hamiltoniano}\}$ +\begin_inset Formula $\text{HAMCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo dirigido con un ciclo hamiltoniano}\}$ \end_inset . @@ -1765,7 +1765,7 @@ La función de conversión de \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{UHAMCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido con un ciclo hamiltoniano}\}$ +\begin_inset Formula $\text{UHAMCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido con un ciclo hamiltoniano}\}$ \end_inset . @@ -2011,7 +2011,7 @@ Claramente la función de conversión de \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{COLOR}\coloneqq\{\langle G,k\rangle:G\text{ es un grafo no dirigido }k\text{-coloreable}\}$ +\begin_inset Formula $\text{COLOR}\coloneqq\{\langle G,k\rangle\mid G\text{ es un grafo no dirigido }k\text{-coloreable}\}$ \end_inset . @@ -2277,7 +2277,7 @@ Un ciclo hamiltoniano en \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{SUBSET-SUM}\coloneqq\{\langle S,t\rangle:S\text{ es una lista de naturales con una subsecuencia que suma }t\}.$ +\begin_inset Formula $\text{SUBSET-SUM}\coloneqq\{\langle S,t\rangle\mid S\text{ es una lista de naturales con una subsecuencia que suma }t\}.$ \end_inset @@ -2605,7 +2605,7 @@ ión, pero calcular las potencias de 10 corresponde a multiplicar por 10 \end_deeper \begin_layout Enumerate -\begin_inset Formula $\text{VERTEX-COVER}\coloneqq\{\langle G,k\rangle:G\text{ es un grafo no dirigido con una }k\text{-cobertura}\}$ +\begin_inset Formula $\text{VERTEX-COVER}\coloneqq\{\langle G,k\rangle\mid G\text{ es un grafo no dirigido con una }k\text{-cobertura}\}$ \end_inset . @@ -241,7 +241,7 @@ con para dicho problema con redondeo, dado por \begin_inset Formula \[ -\left\{ \begin{aligned}\omega_{0} & :=x_{0}+\delta_{0},\\ +\left\{ \begin{aligned}\omega_{0} & \mid =x_{0}+\delta_{0},\\ \omega_{i+1} & :=\omega_{i}+hf(t_{i},\omega_{i})+\delta_{i+1}, \end{aligned} \right. @@ -240,7 +240,7 @@ región de estabilidad absoluta \end_inset , -\begin_inset Formula $R=\{z\in\mathbb{C}:|Q(z)|<1\}$ +\begin_inset Formula $R=\{z\in\mathbb{C}\mid |Q(z)|<1\}$ \end_inset , y para uno multipaso que converge cuando cada @@ -248,7 +248,7 @@ región de estabilidad absoluta \end_inset , es -\begin_inset Formula $R=\{z\in\mathbb{C}:|\beta_{i}|<1,\forall i\}$ +\begin_inset Formula $R=\{z\in\mathbb{C}\mid |\beta_{i}|<1,\forall i\}$ \end_inset . @@ -272,7 +272,7 @@ Hay que tener en cuenta la región de estabilidad antes de considerar un A-estable \series default si -\begin_inset Formula $\{z\in\mathbb{C}:\text{Re}z<0\}\subseteq R$ +\begin_inset Formula $\{z\in\mathbb{C}\mid \text{Re}z<0\}\subseteq R$ \end_inset . diff --git a/pcd/n.pdf b/pcd/n.pdf Binary files differdeleted file mode 100644 index 1b7678e..0000000 --- a/pcd/n.pdf +++ /dev/null @@ -421,7 +421,7 @@ Dada una asociación \end_inset es el conjunto de posibles valores de -\begin_inset Formula $|\{a_{i}\in C_{i}:(a_{1},\dots,a_{n})\in R\}|$ +\begin_inset Formula $|\{a_{i}\in C_{i}\mid (a_{1},\dots,a_{n})\in R\}|$ \end_inset para cada diff --git a/rc/n.pdf b/rc/n.pdf Binary files differdeleted file mode 100644 index e01c446..0000000 --- a/rc/n.pdf +++ /dev/null @@ -269,7 +269,7 @@ Y-O \end_inset , sea -\begin_inset Formula $N:=\{S\subseteq V:(u,S)\in A\}$ +\begin_inset Formula $N:=\{S\subseteq V\mid (u,S)\in A\}$ \end_inset , @@ -315,7 +315,7 @@ primitiva árbol Y/O \series default es un grafo Y/O para el que el grafo no dirigido -\begin_inset Formula $(V,\{(u,v)\in V\times V:\exists(u,S)\in A:v\in S\})$ +\begin_inset Formula $(V,\{(u,v)\in V\times V\mid \exists(u,S)\in A\mid v\in S\})$ \end_inset es acíclico. @@ -145,7 +145,7 @@ Podemos representar un problema de búsqueda en un espacio de estados como \end_inset , -\begin_inset Formula $\{w\in V:(v,w)\in A\}$ +\begin_inset Formula $\{w\in V\mid (v,w)\in A\}$ \end_inset es finito y recursivamente enumerable a partir de @@ -1224,7 +1224,7 @@ Podemos representar un problema de reducción como una tupla \end_inset contable y tanto -\begin_inset Formula $\{S\subseteq V:(u,S)\in V\}$ +\begin_inset Formula $\{S\subseteq V\mid (u,S)\in V\}$ \end_inset como cada uno de sus elementos finito y recursivamente enumerable a partir @@ -685,7 +685,7 @@ En lógica de predicados, a todo predicado \end_inset le corresponde un conjunto -\begin_inset Formula $\{x\in U:P(x)\}$ +\begin_inset Formula $\{x\in U\mid P(x)\}$ \end_inset y una @@ -449,7 +449,7 @@ soporte \end_inset es -\begin_inset Formula $s(Z):=\frac{|\{e\in D:Z\subseteq e\}|}{|D|}$ +\begin_inset Formula $s(Z):=\frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$ \end_inset ; la @@ -490,7 +490,7 @@ cobertura . Las diapositivas usan la notación de mierda -\begin_inset Formula $|X|:=|\{e\in D:X\subseteq e\}|$ +\begin_inset Formula $|X|:=|\{e\in D\mid X\subseteq e\}|$ \end_inset . @@ -406,7 +406,7 @@ La topología cofinita \series default : -\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X:X\backslash A\text{ es finito}\}$ +\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X\mid X\backslash A\text{ es finito}\}$ \end_inset . @@ -1381,7 +1381,7 @@ círculo \end_inset es el conjunto -\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X:d(p,x)=r\}$ +\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$ \end_inset . @@ -1402,7 +1402,7 @@ bola abierta \end_inset es el conjunto -\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X:d(p,x)<r\}$ +\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$ \end_inset , y la @@ -1422,7 +1422,7 @@ bola cerrada \end_inset es el conjunto -\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X:d(p,x)\leq r\}$ +\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$ \end_inset . @@ -110,7 +110,7 @@ adherencia denota \begin_inset Formula \[ -\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}:S\subseteq C\} +\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}\mid S\subseteq C\} \] \end_inset @@ -709,7 +709,7 @@ interior , y se denota \begin_inset Formula \[ -\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}:A\subseteq S\} +\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}\mid A\subseteq S\} \] \end_inset @@ -1160,7 +1160,7 @@ Sea \end_inset , entonces -\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$ \end_inset . @@ -1249,7 +1249,7 @@ Así pues, en un espacio métrico \end_inset si y sólo si -\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$ \end_inset , y @@ -1257,7 +1257,7 @@ Así pues, en un espacio métrico \end_inset si y sólo si -\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$ +\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S\mid x_{n},y_{n}\rightarrow x$ \end_inset . @@ -245,7 +245,7 @@ De aquí que Demostración: \series default Tomando -\begin_inset Formula ${\cal B}(p)=\{B(p;\delta):\delta>0\}$ +\begin_inset Formula ${\cal B}(p)=\{B(p;\delta)\mid \delta>0\}$ \end_inset y @@ -369,7 +369,7 @@ Demostración: \end_inset y definimos -\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$ +\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A})\mid [a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$ \end_inset . @@ -268,7 +268,7 @@ entorno \end_inset es un elemento de -\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}:x\in{\cal U}\}$ +\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$ \end_inset . @@ -459,7 +459,7 @@ abierta a \begin_inset Formula \[ -B_{d}(x,\delta):=\{y\in X:d(x,y)<\varepsilon\}. +B_{d}(x,\delta):=\{y\in X\mid d(x,y)<\varepsilon\}. \] \end_inset @@ -485,7 +485,7 @@ inducida \end_inset a la topología -\begin_inset Formula ${\cal T}_{d}:=\{A\in X:\forall x\in A,\exists\delta>0:B_{d}(x,\delta)\subseteq A\}$ +\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$ \end_inset . @@ -578,7 +578,7 @@ La -esfera \series default , -\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}:x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ +\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ \end_inset . @@ -630,7 +630,7 @@ El cilindro \series default , -\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=1,0\leq z\leq1\}$ +\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$ \end_inset , cono de rotación sobre el eje @@ -666,7 +666,7 @@ El toro \series default , -\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ +\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ \end_inset , cono de rotación sobre el eje @@ -674,7 +674,7 @@ toro \end_inset de -\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}$ +\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}$ \end_inset . @@ -695,7 +695,7 @@ status open \end_inset Tenemos -\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}=\{\alpha(s):=(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ +\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ \end_inset , luego el cono de rotación es @@ -1056,7 +1056,7 @@ Como los abiertos en \end_inset , -\begin_inset Formula $s^{-1}((a,b))=\{(x,y):a<s(x,y)=x+y<b\}=\{(x,y):a-x<y<b-x\}$ +\begin_inset Formula $s^{-1}((a,b))=\{(x,y)\mid a<s(x,y)=x+y<b\}=\{(x,y)\mid a-x<y<b-x\}$ \end_inset . @@ -1135,7 +1135,7 @@ Dado \end_inset , queremos ver que -\begin_inset Formula $p^{-1}((a,b))=\{(x,y):a<p(x,y)=xy<b\}$ +\begin_inset Formula $p^{-1}((a,b))=\{(x,y)\mid a<p(x,y)=xy<b\}$ \end_inset es abierto. @@ -1217,7 +1217,7 @@ Basta ver que, dada una bola , su inversa es un abierto. Tenemos -\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x:d_{\infty}((x,\dots,x),y)<r\}=\{t:|x-y_{1}|,\dots,|x-y_{n}|<r\}$ +\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid |x-y_{1}|,\dots,|x-y_{n}|<r\}$ \end_inset , pero @@ -2043,7 +2043,7 @@ topología generada \end_inset a -\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X:\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U\}$ +\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$ \end_inset , y se tiene que @@ -2456,7 +2456,7 @@ Dada una base \end_inset numerable, -\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}:x\in B\}$ +\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}\mid x\in B\}$ \end_inset es base de entornos de @@ -1125,7 +1125,7 @@ Ejemplos de conexión \begin_layout Enumerate La hipérbola -\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}-y^{2}=1\}$ +\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}-y^{2}=1\}$ \end_inset no es conexa. @@ -1134,11 +1134,11 @@ status open \begin_layout Plain Layout Sean -\begin_inset Formula $U:=\{(x,y):x>0\}$ +\begin_inset Formula $U:=\{(x,y)\mid x>0\}$ \end_inset , -\begin_inset Formula $V:=\{(x,y):x<0\}$ +\begin_inset Formula $V:=\{(x,y)\mid x<0\}$ \end_inset e @@ -1150,7 +1150,7 @@ Sean \end_inset , luego -\begin_inset Formula $Y\subseteq U\cap V=\{(x,y):x\neq0\}$ +\begin_inset Formula $Y\subseteq U\cap V=\{(x,y)\mid x\neq0\}$ \end_inset ; @@ -1351,7 +1351,7 @@ La función status open \begin_layout Plain Layout -\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\neq0\}$ +\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\neq0\}$ \end_inset , luego existe la función continua @@ -1372,7 +1372,7 @@ status open . -\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\in\{-1,1\}\}$ +\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\in\{-1,1\}\}$ \end_inset , luego @@ -2393,7 +2393,7 @@ Sea . Ahora bien, -\begin_inset Formula $\{U_{\delta}:=(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$ +\begin_inset Formula $\{U_{\delta}\mid =(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$ \end_inset es un recubrimiento de @@ -2750,7 +2750,7 @@ Sea \end_inset continua, -\begin_inset Formula $\text{fix}f:=\{x\in X:f(x)=x\}$ +\begin_inset Formula $\text{fix}f:=\{x\in X\mid f(x)=x\}$ \end_inset es cerrado en @@ -309,7 +309,7 @@ Sean status open \begin_layout Plain Layout -\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$ +\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$ \end_inset y @@ -736,7 +736,7 @@ unión disjunta \end_inset son espacios topológicos, definimos la topología -\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$ +\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$ \end_inset . @@ -934,7 +934,7 @@ Sea \end_inset , -\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$ +\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$ \end_inset lo es de @@ -947,7 +947,7 @@ Sea . Del mismo modo -\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$ +\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$ \end_inset admite un subrecubrimiento finito @@ -1122,11 +1122,11 @@ Sean \end_inset disjuntos, y basta tomar -\begin_inset Formula $\{x:(x,0)\in U\}$ +\begin_inset Formula $\{x\mid (x,0)\in U\}$ \end_inset y -\begin_inset Formula $\{x:(x,0)\in V\}$ +\begin_inset Formula $\{x\mid (x,0)\in V\}$ \end_inset . @@ -1449,7 +1449,7 @@ Dado un abierto \end_inset , -\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$ +\begin_inset Formula $a^{-1}(U)=\{x\in X\mid a(x)\in U\}=f^{-1}(U\times Y)$ \end_inset , que es abierto por la hipótesis. @@ -1479,7 +1479,7 @@ Dado un elemento básico \end_inset , -\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$ +\begin_inset Formula $f^{-1}(U\times)=\{x\in X\mid a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$ \end_inset , que es abierto. @@ -2269,7 +2269,7 @@ Sean \end_inset , sea -\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$ +\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$ \end_inset , @@ -2360,7 +2360,7 @@ topología cociente \end_inset a -\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$ +\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$ \end_inset , donde @@ -2832,7 +2832,7 @@ Si \end_inset es Hausdorff si y sólo si -\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$ +\begin_inset Formula $\{(x,y)\in X\times X\mid x\sim y\}$ \end_inset es cerrado en @@ -747,7 +747,7 @@ El recíproco no se cumple: \begin_layout Enumerate La corona circular -\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}+y^{2}\in[0,1]\}$ +\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}+y^{2}\in[0,1]\}$ \end_inset es homotópicamente equivalente, pero no homeomorfa, a @@ -258,7 +258,7 @@ envoltura convexa , \begin_inset Formula \[ -\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}:\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} . +\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}\;\middle|\;\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} . \] \end_inset @@ -520,6 +520,22 @@ dimensión \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Ejemplos: \end_layout @@ -578,6 +594,22 @@ Añadir dibujos. \end_layout +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + \begin_layout Section Número de Euler \end_layout |
